NOIP提高组—— 问题求解 与 完善程序
问题求解1:
甲乙丙丁四人在考虑周末要不要外出郊游。
已知①如果周末下雨,并且乙不去,则甲一定不去;②如果乙去,则丁一定去;③如果丙去,则丁一定不去;④如果丁不去,而且甲不去,则丙一定不去。如果周末丙去了,则甲___去了___(去了/没去)(1 分),乙___没去___(去
了/没去)(1 分),丁____没去__(去了/没去)(1 分),周末___没下雨___(下雨/没下雨)(2 分)。
分析:大水题,送分。只要别写错字就好了。
证明:
丙去了,联系③,丁不会去,一分 get
丁没去,联系②,乙不会去,一分 get
丁没去,丙去了,联系④,甲会去,一分 get
乙不去,甲去了,联系①,不会下雨,两分 get
问题求解2:
方程 a*b = (a or b) * (a and b),在 a,b 都取 [0, 31] 中的整数时,共有 454 组解。(* 表示乘法;or 表示按位或运算;and 表示按位与运算)
分析:考场上蒙了蒙,感觉等式成立的条件应该是 a 是 b 二进制下的子集或者 b 是 a 的子集。
然鹅并没有证明出来,于是就组合数搞了一下水掉了
(我同桌其实也 A 掉了,而且他还证出来了只不过他算错了2333)。
于是证明一下:
不妨设 t = a- (a & b) 。(一开始我是设 t = a&b 的,所以死活证不出来), 于是 (x | y) = (y+t)
然后我们将 t 带入式子,得到: $a * b = ( a - t ) * ( b + t )$ 。
然后展开
=> $a * b = a*b + a*t - b*t - t*t$
=> $a*t - b*t - t*t = 0$
=> $t * (a - b - t) = 0$
=> 1. t=0 ; 2. a=b+t
考虑 t=0 的情况,t 等于零 意味着 a = a&b ,那么也就说明二进制下的 a 被包含于 b 中。
再考虑 a=b+t 的情况,这意味着 b=a&b,那么也就说明二进制下的 b 被包含于 a 中。
于是我们得出结论: 若原式成立,则在二进制下,a 是 b 的子集,或者 b 是 a 的子集。
然后我们考虑到如果 a=b ,那么原式必然成立,所以我们先将答案加上 32 (0~31每个数都与自己匹配),然后我们去讨论 b 是 a 的 真 子集情况,然后把讨论出来的答案 * 2 累加上去就好了。
那么我们先考虑 a 的数值。如果说这时候我们枚举 32 次,答案也是能出来的,但是这样做不仅低效率而且容易出错,那么我们考虑在用二进制的方法枚举 a 。
其实既然说了 b 是 a 的二进制真子集了,那么其实 我们只需要枚举在 log32 位空格(也就是 5 个空格)里面,放 k(k=0~5) 个 1 的方案就好了,因为这些数对答案的贡献是相同的,都是 k 个 1 里面计算真子集数。
那么方案数也就是组合数 C(5,k) 了。然后我们考虑在这 k 个位置里面安排 b 。 那么 b 的数值方案数也还是组合数,就是 $sigma_{s=1}^{k} C(k,s)$ 了。
然后我们将 $sigma_{s=1}^{k} C(k,s)$ 乘上 C(5,k),再乘以二,累加进答案就好了。
最近我听说这道题是吉老师出的啊?而且原数据范围是 [ 0~1023 ] 啊?不过后来谁验题后改成 [ 0~32 ] 了? 反正不是杜雨皓【逃】
于是我们得出结论:吉老师是铁了心要给 zjoi 选手盖上棺材板了 (但愿复赛...咳咳)
emmm...其实1024的范围用上面的方法是可以计算的(唔,别打脸),只不过麻烦了点,就是不知道要不要用到更高深的组合数学理论(反正我不会,组合数没好好学哈~)
完善程序1:
对于一个1到
NOIP提高组—— 问题求解 与 完善程序的更多相关文章
- NOIP提高组初赛难题总结
NOIP提高组初赛难题总结 注:笔者开始写本文章时noip初赛新题型还未公布,故会含有一些比较老的内容,敬请谅解. 约定: 若无特殊说明,本文中未知数均为整数 [表达式] 表示:在表达式成立时它的值为 ...
- [NOIP提高组2018]货币系统
[TOC] 题目名称:货币系统 来源:2018年NOIP提高组 链接 博客链接 CSDN 洛谷博客 洛谷题解 题目链接 LibreOJ(2951) 洛谷(P5020) 大视野在线评测(1425) 题目 ...
- 津津的储蓄计划 NOIp提高组2004
这个题目当年困扰了我许久,现在来反思一下 本文为博客园ShyButHandsome的原创作品,转载请注明出处 右边有目录,方便快速浏览 题目描述 津津的零花钱一直都是自己管理.每个月的月初妈妈给津津\ ...
- 2018.12.30【NOIP提高组】模拟赛C组总结
2018.12.30[NOIP提高组]模拟赛C组总结 今天成功回归开始做比赛 感觉十分良(zhōng)好(chà). 统计数字(count.pas/c/cpp) 字符串的展开(expand.pas/c ...
- NOIP提高组2004 合并果子题解
NOIP提高组2004 合并果子题解 描述:在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消 ...
- 计蒜客 NOIP 提高组模拟竞赛第一试 补记
计蒜客 NOIP 提高组模拟竞赛第一试 补记 A. 广场车神 题目大意: 一个\(n\times m(n,m\le2000)\)的网格,初始时位于左下角的\((1,1)\)处,终点在右上角的\((n, ...
- 1043 方格取数 2000 noip 提高组
1043 方格取数 2000 noip 提高组 题目描述 Description 设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样 ...
- 2018.12.08【NOIP提高组】模拟B组总结(未完成)
2018.12.08[NOIP提高组]模拟B组总结 diyiti 保留道路 进化序列 B diyiti Description 给定n 根直的木棍,要从中选出6 根木棍,满足:能用这6 根木棍拼出一个 ...
- NOIP提高组题目归类+题解摘要(2008-2017)
因为前几天作死立了一个flag说要把NOIP近十年的题目做一做,并写一个题目归类+题解摘要出来,所以这几天就好好的(然而还是颓废了好久)写了一些这些往年的NOIP题目. 这篇博客有什么: 近十年NOI ...
随机推荐
- ASP.NET MVC+EF框架+EasyUI实现权限管理(附源码)
前言:时间很快,已经快到春节的时间了,这段时间由于生病,博客基本没更新,所以今天写一下我们做的一个项目吧,是对权限的基本操作的操作,代码也就不怎么说了,直接上传源码和图片展示,下面我们直接进入主题介绍 ...
- python+selenium 模拟登陆,自动下单
目前写的实在太粗糙,留着,以后来写上
- MySQL 字符集问题
MySQL 支持许多字符集及其编码方案, 甚至是不同编码之间的转换. 在使用 MySQL 进行应用程序编程时, 常常会出现乱码现象, 这通常是由于客户端没有声明与 MySQL 服务器通信的字符串编码造 ...
- Linux 下杀毒可用工具 clamav
clamav 杀毒工具:Linux下可用的杀毒工具: 下载地址: 最新 包 0.101 官网下载地址:http://www.clamav.net/downloads最新包地址: https://cla ...
- 练习:javascript弹出框及地址选择功能,可拖拽
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- windows Apache 环境下配置支持HTTPS的SSL证书
windows Apache 环境下配置支持HTTPS的SSL证书 1.准备工作 1)在设置Apache + SSL之前, 需要做: 安装Apache, 下载安装Apache时请下载带有SSL版本的A ...
- Spark思维导图之性能优化
- 允许长单词、数字、URL换行到下一行
CSS3 word-wrap 属性 normal 只在允许的断字点换行(浏览器保持默认处理) break-word 在长单词.数字.URL地址内部进行换行 页面效果图: 源码:
- Failed to read artifact descriptor for org.apache.maven.plugins:maven-install-plugin-JavaWeb(四)
今天使用maven clean, maven install 出现了下图问题,只解决了 maven clean , 还有maven install 今天 使用maven clean 出现以下问题(把下 ...
- Javascript入门(二)变量、获取元素、操作元素
一.变量 Javascript 有五种基本数据类型 number.String.boolean.undefined.null 一种复合类型:object 二.使用getElementById方法获取元 ...