题意:

  给一些集合 要求证明所有集合是相同的

  证明方法是,如果$A∈B$,$B∈A$那么$A=B$成立

  每一次证明可以得出一个$X∈Y$

  现在已经证明一些$A∈B$成立

  求,最少再证明多少次,就可以完成要求

分析

  其实就等价于给一个有向图,问你再加入多少个边可以使得图变为强连通图

  给一个图论经典结论:

  "对于一个有向无环图(DAG),若想让它成为强连通图,至少需要添加$max(a,b)$条边 $a$为入度为0的点的数量,$b$为出度为0的点的数量"

  而对于一个有向图,其每个强连通分量都互相可达,也就是只要到达任意一个点,即可到达内部所有的点

  现在,只要对于强连通分量进行缩点,再新图中统计出入度数即可得到答案

  *注意,如果强连通分量只有1个,答案应该是0而不是1

#include <bits/stdc++.h>
#define ll long long
#define IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define pp pair<int,int>
#define rep(ii,a,b) for(int ii=a;ii<=b;ii++)
#define per(ii,a,b) for(int ii=a;ii>=b;ii--)
#define show(x) cout<<#x<<"="<<x<<endl
#define show2(x,y) cout<<#x<<"="<<x<<" "<<#y<<"="<<y<<endl
#define show3(x,y,z) cout<<#x<<"="<<x<<" "<<#y<<"="<<y<<" "<<#z<<"="<<z<<endl
#define showa(a,b) cout<<#a<<'['<<#b<<"]="<<a[b]<<endl
using namespace std;
const int maxn=1e5+10;
const int maxm=1e6+10;
const int INF=0x3f3f3f3f;
int casn,n,m,k;
int stk[maxn],top,cnt,dfn[maxn],low[maxn],numc,belong[maxn],vis[maxn];
struct node {int to,cost,next;}e[maxm];int head[maxn],nume;
void add(int a,int b,int c=1){e[++nume]=(node){b,c,head[a]};head[a]=nume;}
void tdfs(int now){
dfn[now]=low[now]=++cnt;
stk[top++]=now;
vis[now]=1;
for(int i=head[now];i;i=e[i].next){
int to=e[i].to;
if(!dfn[to]){tdfs(to);low[now]=min(low[now],low[to]);}
else if(vis[to]) low[now]=min(low[now],dfn[to]);
}
if(low[now]==dfn[now]){
numc++;
int to;
do{
to=stk[--top];
belong[to]=numc;
vis[to]=0;
}while(to!=now);
}
}
void tarjan(int numv=n){
for(int i=1;i<=numv;i++){
if(!dfn[i]) tdfs(i);
}
}
void ginit(){
nume=top=numc=cnt=0;
memset(head,0,sizeof head);
memset(dfn,0,sizeof dfn);
}
int din[maxn],dout[maxn]; int main(){
//#define test
#ifdef test
freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#endif while(cin>>n>>m){
if(m==0) {
cout<<n<<endl;
continue;
}
ginit();
memset(din,0,sizeof din);
memset(dout,0,sizeof dout);
for(int i=0;i<m;i++){
int a,b;
cin>>a>>b;
add(a,b);
}
tarjan();
for(int i=1;i<=n;i++){
for(int j=head[i];j;j=e[j].next){
if(belong[i]==belong[e[j].to])continue;
dout[belong[i]]++;
din[belong[e[j].to]]++;
}
}
int a=0,b=0;
for(int i=1;i<=numc;i++){
if(din[i]==0)a++;
if(dout[i]==0)b++;
}
if(numc==1) a=b=0;
cout<<max(a,b)<<endl;
} #ifdef test
fclose(stdin);fclose(stdout);system("out.txt");
#endif
return 0;
}

  

Equivalent Sets HDU - 3836 2011多校I tarjan强连通分量的更多相关文章

  1. Equivalent Sets HDU - 3836 (Tarjan)

    题目说给出一些子集,如果A是B的子集,B是A的子集,那么A和B就是相等的,然后给出n个集合m个关系,m个关系表示u是v的子集,问你最小再添加多少个关系可以让这n个集合都是相等的 如果这n个几个都是互相 ...

  2. HDU 1269 迷宫城堡(判断有向图强连通分量的个数,tarjan算法)

    迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  3. HDU 4685 Prince and Princess(二分图+强连通分量)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4685 题意:给出n个王子和m个公主.每个王子有一些自己喜欢的公主可以匹配.设最大匹配为M.那么对于每个 ...

  4. HDU 3861 The King’s Problem(强连通分量+最小路径覆盖)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意: 在csdn王国里面, 国王有一个新的问题. 这里有N个城市M条单行路,为了让他的王国 ...

  5. HDU 3861 The King's Problem(强连通分量缩点+最小路径覆盖)

    http://acm.hdu.edu.cn/showproblem.php?pid=3861 题意: 国王要对n个城市进行规划,将这些城市分成若干个城市,强连通的城市必须处于一个州,另外一个州内的任意 ...

  6. 【BZOJ2438】 [中山市选2011]杀人游戏 tarjan强连通分量+缩点

    Description 一位冷血的杀手潜入 Na-wiat,并假装成平民.警察希望能在 N 个人里面,查出谁是杀手. 警察能够对每一个人进行查证,假如查证的对象是平民,他会告诉警察,他认识的人, 谁是 ...

  7. 【(最小权点基)tarjan强连通分量缩点+tarjan模板】HDU 5934 Bomb

    [AC] #include<bits/stdc++.h> using namespace std; typedef long long ll; int n; ; ; const int i ...

  8. HDU - 1269 迷宫城堡(有向图的强连通分量)

    d.看一个图是不是强连通图 s.求出强连通分量,看看有没有一个强连通分量包含所有点. c.Tarjan /* Tarjan算法 复杂度O(N+M) */ #include<iostream> ...

  9. [tarjan] hdu 3836 Equivalent Sets

    主题链接: http://acm.hdu.edu.cn/showproblem.php? pid=3836 Equivalent Sets Time Limit: 12000/4000 MS (Jav ...

随机推荐

  1. Tomcat记录-tomcat常用配置详解和优化方法(转载)

    常用配置详解 1 目录结构 /bin:脚本文件目录. /common/lib:存放所有web项目都可以访问的公共jar包(使用Common类加载器加载). /conf:存放配置文件,最重要的是serv ...

  2. CodeFirst+MySql开发

    CodeFirst+MySql开发简单入门 记录一下使用Mysql进行EF Codefirst方式开发的简单过程. 0.准备工作 安装MySql,mysql-connector-net,mysql-f ...

  3. Web API中给领域模型添加媒体类型支持

    一.媒体类型 媒体类型(也称为MIME类型)标识一段数据的格式.在HTTP中,媒体类型描述了消息体的格式.媒体类型由两个字符串组成,一个类型和一个子类型.例如:text / html: image/ ...

  4. ubuntu linux下建立stm32开发环境: 程序烧录 openocd+openjtag

    原文出处: http://blog.csdn.net/embbnux/article/details/17619621 之前建立stm32开发环境,程序也已经编译好生成main.bin,接下来就是要把 ...

  5. Java方向如何准备技术面试答案(汇总版)

    本文转载自:"Java团长"公众号 1.面向对象和面向过程的区别 面向过程优点:性能比面向对象高,因为类调用时需要实例化,开销比较大,比较消耗资源;比如单片机.嵌入式开发.Linu ...

  6. docker 系列 - 容器数据持久化和数据共享

    docker 主要有两种数据存储形式, 一种是storage driver(也叫做 Graph driver), 另一种是 volume driver. stroage driver主要是存储那些无状 ...

  7. Java入门系列

    包装类 基本数据类型之间的相互转换不是都可以制动转换的,而你强制转换又会出问题,比如String类型的转换为int类型的,那么jdk为了方便用户就提供了相应的包装类. 基本类型对应的包装类 创建一个包 ...

  8. 初入爬虫(java)

    public class CrawlerUtil { public static void main(String [] args) throws IOException { // 创建默认的http ...

  9. Object 中的wait和Thread中sleep的区别

    摘自 http://www.cnblogs.com/loren-Yang/p/7538482.html 一.区别 1.wait()来自于Object类而sleep来自于Thread类 2.sleep没 ...

  10. Mysql清空表(truncate)与删除表中数据(delete)的区别

    来源:http://blog.is36.com/mysql_difference_of_truncate_and_delete/ 为某基于wordpress搭建的博客长久未除草,某天升级的时候发现已经 ...