题意:

  给一些集合 要求证明所有集合是相同的

  证明方法是,如果$A∈B$,$B∈A$那么$A=B$成立

  每一次证明可以得出一个$X∈Y$

  现在已经证明一些$A∈B$成立

  求,最少再证明多少次,就可以完成要求

分析

  其实就等价于给一个有向图,问你再加入多少个边可以使得图变为强连通图

  给一个图论经典结论:

  "对于一个有向无环图(DAG),若想让它成为强连通图,至少需要添加$max(a,b)$条边 $a$为入度为0的点的数量,$b$为出度为0的点的数量"

  而对于一个有向图,其每个强连通分量都互相可达,也就是只要到达任意一个点,即可到达内部所有的点

  现在,只要对于强连通分量进行缩点,再新图中统计出入度数即可得到答案

  *注意,如果强连通分量只有1个,答案应该是0而不是1

#include <bits/stdc++.h>
#define ll long long
#define IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define pp pair<int,int>
#define rep(ii,a,b) for(int ii=a;ii<=b;ii++)
#define per(ii,a,b) for(int ii=a;ii>=b;ii--)
#define show(x) cout<<#x<<"="<<x<<endl
#define show2(x,y) cout<<#x<<"="<<x<<" "<<#y<<"="<<y<<endl
#define show3(x,y,z) cout<<#x<<"="<<x<<" "<<#y<<"="<<y<<" "<<#z<<"="<<z<<endl
#define showa(a,b) cout<<#a<<'['<<#b<<"]="<<a[b]<<endl
using namespace std;
const int maxn=1e5+10;
const int maxm=1e6+10;
const int INF=0x3f3f3f3f;
int casn,n,m,k;
int stk[maxn],top,cnt,dfn[maxn],low[maxn],numc,belong[maxn],vis[maxn];
struct node {int to,cost,next;}e[maxm];int head[maxn],nume;
void add(int a,int b,int c=1){e[++nume]=(node){b,c,head[a]};head[a]=nume;}
void tdfs(int now){
dfn[now]=low[now]=++cnt;
stk[top++]=now;
vis[now]=1;
for(int i=head[now];i;i=e[i].next){
int to=e[i].to;
if(!dfn[to]){tdfs(to);low[now]=min(low[now],low[to]);}
else if(vis[to]) low[now]=min(low[now],dfn[to]);
}
if(low[now]==dfn[now]){
numc++;
int to;
do{
to=stk[--top];
belong[to]=numc;
vis[to]=0;
}while(to!=now);
}
}
void tarjan(int numv=n){
for(int i=1;i<=numv;i++){
if(!dfn[i]) tdfs(i);
}
}
void ginit(){
nume=top=numc=cnt=0;
memset(head,0,sizeof head);
memset(dfn,0,sizeof dfn);
}
int din[maxn],dout[maxn]; int main(){
//#define test
#ifdef test
freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#endif while(cin>>n>>m){
if(m==0) {
cout<<n<<endl;
continue;
}
ginit();
memset(din,0,sizeof din);
memset(dout,0,sizeof dout);
for(int i=0;i<m;i++){
int a,b;
cin>>a>>b;
add(a,b);
}
tarjan();
for(int i=1;i<=n;i++){
for(int j=head[i];j;j=e[j].next){
if(belong[i]==belong[e[j].to])continue;
dout[belong[i]]++;
din[belong[e[j].to]]++;
}
}
int a=0,b=0;
for(int i=1;i<=numc;i++){
if(din[i]==0)a++;
if(dout[i]==0)b++;
}
if(numc==1) a=b=0;
cout<<max(a,b)<<endl;
} #ifdef test
fclose(stdin);fclose(stdout);system("out.txt");
#endif
return 0;
}

  

Equivalent Sets HDU - 3836 2011多校I tarjan强连通分量的更多相关文章

  1. Equivalent Sets HDU - 3836 (Tarjan)

    题目说给出一些子集,如果A是B的子集,B是A的子集,那么A和B就是相等的,然后给出n个集合m个关系,m个关系表示u是v的子集,问你最小再添加多少个关系可以让这n个集合都是相等的 如果这n个几个都是互相 ...

  2. HDU 1269 迷宫城堡(判断有向图强连通分量的个数,tarjan算法)

    迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  3. HDU 4685 Prince and Princess(二分图+强连通分量)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4685 题意:给出n个王子和m个公主.每个王子有一些自己喜欢的公主可以匹配.设最大匹配为M.那么对于每个 ...

  4. HDU 3861 The King’s Problem(强连通分量+最小路径覆盖)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意: 在csdn王国里面, 国王有一个新的问题. 这里有N个城市M条单行路,为了让他的王国 ...

  5. HDU 3861 The King's Problem(强连通分量缩点+最小路径覆盖)

    http://acm.hdu.edu.cn/showproblem.php?pid=3861 题意: 国王要对n个城市进行规划,将这些城市分成若干个城市,强连通的城市必须处于一个州,另外一个州内的任意 ...

  6. 【BZOJ2438】 [中山市选2011]杀人游戏 tarjan强连通分量+缩点

    Description 一位冷血的杀手潜入 Na-wiat,并假装成平民.警察希望能在 N 个人里面,查出谁是杀手. 警察能够对每一个人进行查证,假如查证的对象是平民,他会告诉警察,他认识的人, 谁是 ...

  7. 【(最小权点基)tarjan强连通分量缩点+tarjan模板】HDU 5934 Bomb

    [AC] #include<bits/stdc++.h> using namespace std; typedef long long ll; int n; ; ; const int i ...

  8. HDU - 1269 迷宫城堡(有向图的强连通分量)

    d.看一个图是不是强连通图 s.求出强连通分量,看看有没有一个强连通分量包含所有点. c.Tarjan /* Tarjan算法 复杂度O(N+M) */ #include<iostream> ...

  9. [tarjan] hdu 3836 Equivalent Sets

    主题链接: http://acm.hdu.edu.cn/showproblem.php? pid=3836 Equivalent Sets Time Limit: 12000/4000 MS (Jav ...

随机推荐

  1. org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'cardSalDao' defined in file [E:\GItUp\pointerCard+redis\target\gameCard-1.0-SNAPSHOT\WEB-INF\classes\cn\jbit\dao

    错误信息: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'cardSa ...

  2. uva11916 Emoogle Grid (BSGS)

    https://uva.onlinejudge.org/external/119/p11916.pdf 令m表示不能染色的格子的最大行号 设>m行时可以染k种颜色的格子数有ck个,恰好有m行时可 ...

  3. SSH中使用延迟加载报错Exception occurred during processing request: could not initialize proxy - no Session

    17:40:17,249 ERROR DefaultDispatcherErrorHandler:42 - Exception occurred during processing request: ...

  4. Creating A Moddable Unity Game

    前言: 对游戏进行修改与拓展(MOD)是我一直以来感兴趣的东西,我的程序生涯,也是因为在初中接触到GBA口袋妖怪改版开始的,改过也研究过一些游戏的MOD实现方式,早就想在自己的游戏中实现“MOD系统” ...

  5. 小试XML实体注入攻击

    基础知识 XML(Extensible Markup Language)被设计用来传输和存储数据.关于它的语法,本文不准备写太多,只简单介绍一下. XML基本知识 1 2 3 4 5 <?xml ...

  6. luogu 4377 Talent show 01分数规划+背包dp

    01分数规划+背包dp 将分式下面的部分向右边挪过去,通过二分答案验证, 注意二分答案中如果验证的mid是int那么l=mid+1,r=mid-1,double类型中r=mid,l=mid; 背包dp ...

  7. bus实现兄弟组件传值

    传递的地方:两个组件都要引入这个公共的bus中转函数 Bus.js文件相当于一个公共的对象: 传递的文件中写入这个方法: 兄弟组件通过点击事件输出参数,需要的组件来接收传递过来的参数:

  8. Java中常见的锁分类以及对应特点

    对于 Java 锁的分类没有严格意义的规则,我们常说的分类一般都是依据锁的特性.锁的设计.锁的状态等进行归纳整理的,所以常见的分类如下: 公平锁和非公平锁:公平锁是多线程按照锁申请的顺序获取锁,非公平 ...

  9. 表单相关标签之input标签

    用于搜集用户信息. <input type="text" name="fname" /> 标签属性 type 规定 input 元素的类型.输入字段 ...

  10. Spring MVC 注解相关

    // required=false表示不传的话,会给参数赋值为null,required=true就是必须要有 @ResponseBody @RequestMapping("testRequ ...