题目描述

【传送门】

题目大意

给一棵树,有两种操作:

  • 求(u,v)路径的距离。
  • 求以u为起点,v为终点的第k的节点.

分析

比较简单的倍增LCA模板题。
首先对于第一问,我们只需要预处理出根节点到各个节点之间的距离,然后倍增LCA求解就可以了。
那么第二问我WA了6发,原来是眼瞎和手残打错了两个字符错掉了。
我们将问题分成3个部分:

  • LCA是第k个
  • 第k个在u到LCA的路径上
  • 第k个在LCA到v的路径上。

首先如果LCA是第k个,那么直接输出。
如果是第二种情况,那么从u开始做倍增,每一次k-(1<<i)就可以了。
小细节:只能将k变成1,模拟可证明。
第三种情况,那么我们的答案就是从v的第(dep[u]+dep[v]-2*dep[lca]+2),模拟可得该式。

ac代码

#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
#define ll long long
using namespace std;
template <typename T>
inline void read(T &x) {
    x = 0; T fl = 1;
    char ch = 0;
    while (ch < '0' || ch > '9') {
        if (ch == '-') fl = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9') {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    x *= fl;
}
#define N 20005
struct edge {
    int to, nt;
    ll w;
}E[N << 1];
ll dis[N];
int f[N][31], H[N], dep[N];
int cnt, n;
void add_edge(int u, int v, ll w) {
    E[++ cnt] = (edge){v, H[u], w};
    H[u] = cnt;
}
void dfs(int u, int fa, int dist) {
    f[u][0] = fa;
    dis[u] = dist;
    for (int i = 1; i <= 30; i ++)
        f[u][i] = f[f[u][i - 1]][i - 1];
    for (int e = H[u]; e; e = E[e].nt) {
        int v = E[e].to;
        if (v == fa) continue;
        dep[v] = dep[u] + 1;
        dfs(v, u, dist + E[e].w);
    }
}
int lca(int u, int v) {
    if (dep[u] < dep[v]) swap(u, v);
    for (int i = 30; i >= 0; i --)
        if (dep[v] <= dep[f[u][i]]) u = f[u][i];
    if (u == v) return u;
    for (int i = 30; i >= 0; i --)
        if (f[u][i] != f[v][i]) {
            u = f[u][i];
            v = f[v][i];
        }
    return f[u][0];
}
int solve(int u, int v, int k) {
    int Lca = lca(u, v);
    if (dep[u] - dep[Lca] + 1 == k) return Lca;
    else {
        if (dep[u] - dep[Lca] + 1 > k) {
            for (int i = 30; i >= 0; i --)
                if (k - 1 >= (1 << i)) k -= (1 << i), u = f[u][i];
            return u;
        }
        else {
            k = dep[u] + dep[v]- dep[Lca] * 2 - k + 2;
            for (int i = 30; i >= 0; i --)
                if (k - 1 >= (1 << i)) k -= (1 << i), v = f[v][i];
            return v;
        }
    }
}
int main() {
    int cas;
    read(cas);
    char opt[10];
    while (cas --) {
        cnt = 0;
        ms(H, 0);
        ms(dis, 0);
        ms(dep, 0);
        ms(f, 0);
        read(n);
        for (int i = 1; i < n; i ++) {
            int u, v;  ll w;
            read(u); read(v); read(w);
            add_edge(u, v, w);
            add_edge(v, u, w);
        }
        dep[1] = 1;
        dfs(1, 0, 0);
        while (1) {
            scanf("%s", opt);
            if (opt[1] == 'O') break;
            if (opt[0] == 'D') {
                int u, v;
                read(u); read(v);
                int Lca = lca(u, v), res;
                printf("%lld\n", dis[u] + dis[v] - dis[Lca] * 2);
            }
            else {
                int u, v, k;
                read(u); read(v); read(k);
                printf("%d\n", solve(u, v, k));
            }
        }
    }
    return 0;
}

[SPOJ913]QTREE2 - Query on a tree II【倍增LCA】的更多相关文章

  1. spoj 913 Query on a tree II (倍增lca)

    Query on a tree II You are given a tree (an undirected acyclic connected graph) with N nodes, and ed ...

  2. 【SPOJ QTREE2】QTREE2 - Query on a tree II(LCA)

    You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...

  3. Query on a tree II 倍增LCA

    You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...

  4. LCA SP913 QTREE2 - Query on a tree II

    SP913 QTREE2 - Query on a tree II 给定一棵n个点的树,边具有边权.要求作以下操作: DIST a b 询问点a至点b路径上的边权之和 KTH a b k 询问点a至点 ...

  5. SP913 QTREE2 - Query on a tree II

    思路 第一个可以倍增,第二个讨论在a到lca的路径上还是lca到b的路径上, 倍增即可 代码 #include <cstdio> #include <algorithm> #i ...

  6. SPOJ QTREE2 Query on a tree II

    传送门 倍增水题…… 本来还想用LCT做的……然后发现根本不需要 //minamoto #include<bits/stdc++.h> using namespace std; #defi ...

  7. SPOJ COT2 - Count on a tree II(LCA+离散化+树上莫队)

    COT2 - Count on a tree II #tree You are given a tree with N nodes. The tree nodes are numbered from  ...

  8. QTREE2 spoj 913. Query on a tree II 经典的倍增思想

    QTREE2 经典的倍增思想 题目: 给出一棵树,求: 1.两点之间距离. 2.从节点x到节点y最短路径上第k个节点的编号. 分析: 第一问的话,随便以一个节点为根,求得其他节点到根的距离,然后对于每 ...

  9. SPOJ913 Query on a tree II

    Time Limit: 433MS   Memory Limit: 1572864KB   64bit IO Format: %lld & %llu Description You are g ...

随机推荐

  1. MySQL使用select查询时,在查询结果中增加一个字段并指定固定值

    假设需求是这样的: mysql> desc user; +-------+----------+------+-----+---------+----------------+ | Field ...

  2. nginx强制使用https访问(http跳转到https)

    Nginx 的 Location 从零开始配置 - 市民 - SegmentFault 思否https://segmentfault.com/a/1190000009651161 nginx配置loc ...

  3. JMeter中返回Json数据的处理方法(转)

    Json 作为一种数据交换格式在网络开发,特别是 Ajax 与 Restful 架构中应用的越来越广泛.而 Apache 的 JMeter 也是较受欢迎的压力测试工具之一,但是它本身没有提供对于 Js ...

  4. 如何入门vue之二

    学习完指令之后我们需要学习的就是组件. 在学习组件前我们要了解一下 methods 用来处理事件的. computed用来计算属性  他就是类似于data一样只不过是动态的处理数据 里面写的方法当成属 ...

  5. C#的类型推断发展史

    前言:随着C#的版本升级,C#编译器的类型推断功能也在不断的升级以适应语言进化过程中的变化,并为这个过程做了相应的优化. 隐式类型的数组 在C#1和C#2中,作为变量声明和初始化的一部分,初始化数组的 ...

  6. java设计模式:概述与GoF的23种设计模式

    软件设计模式的产生背景 设计模式这个术语最初并不是出现在软件设计中,而是被用于建筑领域的设计中. 1977 年,美国著名建筑大师.加利福尼亚大学伯克利分校环境结构中心主任克里斯托夫·亚历山大(Chri ...

  7. SQL查询临时表空间的数据

  8. Python创建virtualenv(虚拟环境)方法

    本文目录 一 前言 二 通过virtualenv软件创建 三 在pycharm下创建 新建项目 四 已有项目使用和创建虚拟环境 五 参数说明 一 前言 需求:        --公司之有一台服务器   ...

  9. Linux用户权限指令, 定时任务等指令

    一. 网卡配置详解 网络配置文件: /etc/sysconfig/network 网络接口配置文件: /etc/sysconfig/network-scripts/ifcfg-INTERFACE_NA ...

  10. MyBatis基础:MyBatis数据基本操作(2)

    1. MyBatis映射器 2. MyBatis数据基本操作 示例项目结构: <project xmlns="http://maven.apache.org/POM/4.0.0&quo ...