hdu 2159 FATE (二维完全背包)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=2159
思路: dp[j][k] 代表消耗耐久度j,干掉k个敌人获得的经验值。
状态转移方程为: dp[j][k] = max(dp[j][k],dp[j-b[i]][k-1]+a[i]);
保存下当获得经验值可以升级时,维护下最小的耐久消耗
实现代码:
#include<bits/stdc++.h>
using namespace std;
const int inf = 0x3f3f3f3f;
int dp[][],a[],b[]; int main()
{
int n,m,h,s;
while(cin>>n>>m>>h>>s){
for(int i = ;i <= h;i ++){
cin>>a[i]>>b[i];
}
memset(dp,,sizeof(dp));
int ans = inf;
for(int i = ;i <= h;i ++){
for(int j = b[i];j <= m;j ++){
for(int k = ;k <= s;k ++){
dp[j][k] = max(dp[j][k],dp[j-b[i]][k-]+a[i]);
if(dp[j][k] >= n) ans = min(ans,j);
}
}
}
if(ans == inf) cout<<"-1"<<endl;
else cout<<m-ans<<endl;
}
}
hdu 2159 FATE (二维完全背包)的更多相关文章
- hdu 2159 FATE (二维完全背包)
Problem Description 最近xhd正在玩一款叫做FATE的游戏,为了得到极品装备,xhd在不停的杀怪做任务.久而久之xhd开始对杀怪产生的厌恶感,但又不得不通过杀怪来升完这最后一级.现 ...
- HDU 2159 FATE (二维背包)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2159 解题报告:这题实际上是一个二维的背包问题,也可以由01背包扩展而来,01背包用一维数组,可想而知 ...
- HDU 2159 FATE (二维背包)
题意:中文题. 析:dp[i][j] 已经杀了 i 个怪兽,已经用了 j 体积,所能获得的最大经验值,这个和一维的差不多,只是加一维而已. 代码如下: #pragma comment(linker, ...
- HDU2159:FATE(二维完全背包)
Problem Description 最近xhd正在玩一款叫做FATE的游戏,为了得到极品装备,xhd在不停的杀怪做任务.久而久之xhd开始对杀怪产生的厌恶感,但又不得不通过杀怪来升完这最后一级.现 ...
- [hdu2159]FATE二维多重背包(背包九讲练习)
解题关键:二维约束条件,只需加一维状态即可. 转移方程:$f[j][k] = \max (f[j][k],f[j - w[i]][k - 1] + v[i])$ #include<bits/st ...
- 杭电 2159 fate(二维背包费用问题)
FATE Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- HDU 2159 FATE(二维全然背包)
中文题目就不用解释了 就是裸的二维全然背包 d[i][j]表示消耗i忍耐杀j个怪最多可获得的经验 然后就用全然背包来做了 二维背包背包只是是多了一重循环 <span style=&quo ...
- HDOJ(HDU).2159 FATE (DP 带个数限制的完全背包)
HDOJ(HDU).2159 FATE (DP 带个数限制的完全背包) 题意分析 与普通的完全背包大同小异,区别就在于多了一个个数限制,那么在普通的完全背包的基础上,增加一维,表示个数.同时for循环 ...
- hdu 2159 FATE
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2159 思路:二维完全背包,状态转移方程为: f[j][l]=max(f[j][l],f[j-b[i]] ...
- HDU2159 二维完全背包
FATE Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
随机推荐
- Python全栈开发之路 【第二篇】:Python基础之数据类型
本节内容 一.字符串 记住: 有序类型:列表,元组,字符串 ---> 都可迭代: 无序类型:字典,集合 ---> 不可迭代: 特性:不可修改 class str(object): &quo ...
- python第一章:简介与安装--小白博客
Python简介 Python是一种计算机程序设计语言.是一种动态的.面向对象的脚本语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越来越多被用于独立的.大型项 ...
- 莫比乌斯反演III
"haik, hen wir." -- somebody 概述 莫比乌斯反演通过一些恒等变形使需要高时间复杂度计算的式子变为可快速计算的. 一般来说,将形如\(\sum_{d|n} ...
- python中Metaclass的理解
今天在学习<python3爬虫开发实战>中看到这样一段代码3 class ProxyMetaclass(type): def __new__(cls, name, bases, attrs ...
- 小程序wepy.js框架总结
wepy.js借鉴了Vue的语法风格和功能特性,对官方提供的框架进行了封装,更贴近于MVVM架构模式,让开发者更加容易上手,增加开发效率.(脏数据处理--是否有标识.是否有响应) 前端开发的对组件化开 ...
- WPF中任务栏只显示主窗口
我们在用WPF开发的时候,常常会遇到在主窗口打开的情况下,去显示子窗口,而此时任务栏同时显示主窗口与子窗口.这样看起来很不美观.所以在弹出子窗口之前,设置它的几个相应属性,便不会出现这种问题了. // ...
- [转帖]IP地址、子网掩码、网络号、主机号、网络地址、主机地址以及ip段/数字-如192.168.0.1/24是什么意思?
IP地址.子网掩码.网络号.主机号.网络地址.主机地址以及ip段/数字-如192.168.0.1/24是什么意思? 2016年03月26日 23:38:50 JeanCheng 阅读数:105674 ...
- [服务器]Gartner:2018年第四季度全球服务器收入增长17.8% 出货量增长8.5%
Gartner:2018年第四季度全球服务器收入增长17.8% 出货量增长8.5% Gartner 是不是也是花钱买榜的主啊.. 简单看了一下 浪潮2018Q4的营收18亿刀 (季度营收110亿人民币 ...
- vue的定位
高德定位 https://blog.csdn.net/YY110621/article/details/87921605(copy) 话不多说,直接写方法步骤,需要的直接拿去放在自己项目中即可使用先看 ...
- 去掉dede织梦position当前位置最后一个箭头的方法
理论是,dede的当前位置标签{dedefield name='position'}结构是 首页 > 主栏目 > 子栏目 > ,这就说明,而箭头符号字段数据都是在后台设置后存储在数据 ...