Heavy Transportation
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 31882   Accepted: 8445

Description

Background 
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight. 
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

Problem 
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

解题思路

题意:找一条从 1 到 n 的道路,使得这条道路的每段距离中的最小值最大。
思路:利用Kruskal的思想,把每段道路的权值按照从大到小排序,然后依次加边直至 1 可达 n为止,此时这条路中最小直即为答案。
利用dijkstra或是spfa的思想去解,dis[ x ]表示从 1 到达 x 的道路中,其道路段的最小值的最大值。
 

Kruskal()

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn = 1005;
struct Edge{
	int u,v,w;
}edge[maxn*maxn/2];
int fa[maxn];

bool cmp(Edge a,Edge b)
{
	return a.w > b.w;
}

int find(int x)
{
	return fa[x] == x?fa[x]:fa[x] = find(fa[x]);
}

void Union(int x,int y)
{
	int fx = find(x),fy = find(y);
	if (fx != fy)	fa[fx] = fy;
}

int main()
{
	int tcase;
	scanf("%d",&tcase);
	for (int t = 1;t <= tcase;t++)
	{
		int n,m,res = 0x3f3f3f3f;
		scanf("%d%d",&n,&m);
		for (int i = 0;i <= n;i++)	fa[i] = i;
		for (int i = 0;i < m;i++)
		{
			scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
		}
		sort(edge,edge + m,cmp);
		for (int i = 0; i< m;i++)
		{
			Union(edge[i].u,edge[i].v);
			if (find(1) == find(n))
			{
				res = edge[i].w;
				break;
			}
		}
		printf("Scenario #%d:\n",t);
		printf("%d\n",res);
		if (t != tcase)	printf("\n");
	}
	return 0;
} 

dijkstra()

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int maxn = 1005;
const int INF = 0x3f3f3f3f;
struct Edge{
	int u,v,w,nxt;
	bool operator < (const Edge &a)const
	{
		return w < a.w;
	}
}edge[maxn*maxn];
int tot = 0,head[maxn],dis[maxn];
bool vis[maxn];

void addedge(int u,int v,int w)
{
	edge[tot] = (Edge){u,v,w,head[u]
	};
	head[u] = tot++;
}

void dijkstra(int st,int n)
{
	Edge p;
	priority_queue<Edge>que;
	memset(dis,0,sizeof(dis));
	memset(vis,false,sizeof(vis));
	p.v = st;
	p.w = INF;
	dis[st] = INF;
	que.push(p);
	while (!que.empty())
	{
		p = que.top();
		que.pop();
		int u = p.v;
		if (vis[u])	continue;
		vis[u] = true;
		for (int i = head[u];~i;i = edge[i].nxt)
		{
			int v = edge[i].v,w = edge[i].w;
			if (dis[v] < min(dis[u],w))
			{
				dis[v] = min(dis[u],w);
				p.v = v,p.w = dis[v];
				que.push(p);
			}
		}
	}
}

int main()
{
	int tcase;
	scanf("%d",&tcase);
	for (int t = 1;t <= tcase;t++)
	{
		int n,m,u,v,w;
		memset(head,-1,sizeof(head));
		scanf("%d%d",&n,&m);
		for (int i = 0;i < m;i++)
		{
			scanf("%d%d%d",&u,&v,&w);
			addedge(u,v,w);
			addedge(v,u,w);
		}
		dijkstra(1,n);
		printf("Scenario #%d:\n",t);
		printf("%d\n",dis[n]);
		if (t != tcase)	printf("\n");
	}
	return 0;

} 

spfa()

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int maxn = 1005;
const int INF = 0x3f3f3f3f;
struct Edge{
	int u,v,w,nxt;
}edge[maxn*maxn];
int tot = 0,head[maxn],dis[maxn];
bool vis[maxn];

void addedge(int u,int v,int w)
{
	edge[tot] = (Edge){u,v,w,head[u]
	};
	head[u] = tot++;
}

void spfa(int st,int ed)
{
	memset(vis,false,sizeof(vis));
	memset(dis,0,sizeof(dis));
	queue<int>que;
	dis[st] = INF;
	que.push(st);
	vis[st] = true;
	while (!que.empty())
	{
		int u = que.front();
		que.pop();
		vis[u] = false;
		for (int i = head[u];~i;i = edge[i].nxt)
		{
			int v = edge[i].v,w = edge[i].w;
			if (min(dis[u],w) > dis[v])
			{
				dis[v] = min(dis[u],w);
				if (!vis[v])
				{
					que.push(v);
					vis[v] = true;
				}
			}
		}
	}
}

int main()
{
	int tcase;
	scanf("%d",&tcase);
	for (int t = 1;t <= tcase;t++)
	{
		int n,m,u,v,w;
		memset(head,-1,sizeof(head));
		scanf("%d%d",&n,&m);
		for (int i = 0;i < m;i++)
		{
			scanf("%d%d%d",&u,&v,&w);
			addedge(u,v,w);
			addedge(v,u,w);
		}
		spfa(1,n);
		printf("Scenario #%d:\n",t);
		printf("%d\n",dis[n]);
		if (t != tcase)	printf("\n");
	}
}

  

POJ 1797 Heavy Transportation(最大生成树/最短路变形)的更多相关文章

  1. POJ 1797 Heavy Transportation (最大生成树)

    题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...

  2. POJ - 1797 Heavy Transportation 单源最短路

    思路:d(i)表示到达节点i的最大能运输的重量,转移方程d(i) = min(d(u), limit(u, i));注意优先队列应该以重量降序排序来重载小于符号. AC代码 #include < ...

  3. poj 1797 Heavy Transportation(最大生成树)

    poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...

  4. POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)

    POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...

  5. POJ.1797 Heavy Transportation (Dijkstra变形)

    POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...

  6. POJ 1797 Heavy Transportation

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  7. POJ 1797 Heavy Transportation SPFA变形

    原题链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  8. POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】

    Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64 ...

  9. POJ 1797 Heavy Transportation (最短路)

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 22440   Accepted:  ...

随机推荐

  1. iOS 字典或者数组和JSON串的转换

    在和服务器交互过程中,会iOS 字典或者数组和JSON串的转换,具体互换如下: // 将字典或者数组转化为JSON串 + (NSData *)toJSONData:(id)theData { NSEr ...

  2. Android 通过httppost上传文本文件到服务器。

    /** * 往服务器上上传文本 比如log日志 * @param urlstr 请求的url * @param uploadFile log日志的路径 * /mnt/shell/emulated/0/ ...

  3. [Android]使用Dagger 2依赖注入 - 图表创建的性能(翻译)

    以下内容为原创,欢迎转载,转载请注明 来自天天博客:http://www.cnblogs.com/tiantianbyconan/p/5098943.html 使用Dagger 2依赖注入 - 图表创 ...

  4. 【代码笔记】iOS-自定义开关

    一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> #import "ToggleView.h&qu ...

  5. H5 表格标签的其它标签

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  6. Java之递归求和的两张方法

    方法一: package com.smbea.demo; public class Student { private int sum = 0; /** * 递归求和 * @param num */ ...

  7. 使用bulkload向hbase中批量写入数据

    1.数据样式 写入之前,需要整理以下数据的格式,之后将数据保存到hdfs中,本例使用的样式如下(用tab分开): row1 N row2 M row3 B row4 V row5 N row6 M r ...

  8. SSH批量部署服务

    SSH批量部署服务 1.1在NFS上作为中心分发服务器将私钥分发到其他服务器上 1.1.1NFS部署 [root@nfs-server ~]# useradd zhurui [root@nfs-ser ...

  9. python-socket模块

    socket server #!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',9999 ...

  10. swfupload 相关配置

    部署在IIS上出现404: 修改 C:\Windows\System32\inetsrv\config\applicationHost.config 文件 连续查找requestFiltering,往 ...