CRT和EXCRT学习笔记
蒟蒻maomao终于学会\(CRT\)啦!发一篇博客纪念一下(还有防止忘掉)
\(CRT\)要解决的是这样一个问题:
$$x≡a_1(mod m_1)$$
$$x≡a_2(mod m_2)$$
$$x≡a_3(mod m_3)$$
$$...$$
$$x≡a_k(mod m_k)$$
其中,\(m\)之间两两互质。这个问题有一个通解是\(\sum a_i * M * t_i / m_i\),其中\(t_i\)代表方程\(M * t_i / m_i ≡ 1\)的最小正整数解。
为什么它是对的呢?对于任意一个式子\(x≡a_j(mod m_j)\),通解中\(i = j\)的部分会贡献\(a_i\)的余数,而其它部分会贡献\(0\)的余数。
更一般的,我们来考虑如果\(m\)之间不互质的情况,由于打公式很累,所以详细请参考这个博客。
发一下\(exCRT\)的板子。
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 100010;
int n, bi[N], ai[N];
int add (int a, int b, int mod) {
return ((a + b) % mod + mod ) % mod;
}
int mul (int a, int b, int mod) {
int res = 0;
while (b > 0) {
if (b & 1) {
res = (res + a) % mod;
}
a = (a + a) % mod;
b >>= 1;
}
return res;
}
int exgcd (int a, int b, int &x, int &y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
int gcd = exgcd (b, a % b, x, y);
int xx = y, yy = x - (a / b) * y;
x = xx, y = yy;
return gcd;
}
int excrt () {
int x, y;
int M = ai[1], ans = bi[1]; //通解是b[1] + a[1] * t ≡b[2] (mod a[2]);
for(int i = 2; i <= n; ++i) {
//M * x + a[i] * y = b[i] - ans;
//其中 ans + M * x % lcm (M, b[i]) 就是新的通解
//求出来的x是对于gcd (M, a[i])而言,所以要乘上c / gcd (M, a[i]);
int a = M, b = ai[i], c = add (bi[i], -ans, b);
int gcd = exgcd (a, b, x, y), bg = b / gcd;
x = mul (x, c / gcd, ai[i]);
ans += x * M;//更新前k个方程组的答案
M *= bg;//M为前k个m的lcm
ans = (ans %M + M) % M;
}
return ans;
}
signed main () {
cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> ai[i] >> bi[i]; //b是余数,a是模数。
}
cout << excrt () << endl;
return 0;
}
CRT和EXCRT学习笔记的更多相关文章
- 扩展中国剩余定理 exCRT 学习笔记
前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这 ...
- CRT&EXCRT学习笔记
非扩展 用于求解线性同余方程组 ,其中模数两两互质 . 先来看一看两个显然的定理: 1.若 x \(\equiv\) 0 (mod p) 且 y \(\equiv\) 0 (mod p) ,则有 x+ ...
- CRT & EXCRT 学习笔记
这玩意解决的是把同余方程组合并的问题. CRT的核心思想和拉格朗日插值差不多,就是构造一组\(R_i\)使得$\forall i,j(i \neq j) $ \[R_im_i = 1, R_im_j ...
- 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...
- Linux学习笔记(7)CRT实现windows与linux的文件上传下载
Linux学习笔记(7)CRT实现windows与linux的文件上传下载 按下Alt + p 进入SFTP模式,或者右击选项卡进入 命令介绍 help 显示该FTP提供所有的命令 lcd 改变本地上 ...
- 扩展中国剩余定理(EXCRT)学习笔记
扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2} ...
- OI数学 简单学习笔记
基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...
- shell学习笔记
shell学习笔记 .查看/etc/shells,看看有几个可用的Shell . 曾经用过的命令存在.bash_history中,但是~/.bash_history记录的是前一次登录前记录的所有指令, ...
- https学习笔记三----OpenSSL生成root CA及签发证书
在https学习笔记二,已经弄清了数字证书的概念,组成和在https连接过程中,客户端是如何验证服务器端的证书的.这一章,主要介绍下如何使用openssl库来创建key file,以及生成root C ...
随机推荐
- Lodop部署web网站 客户端本地打印角色
Lodop用于客户端本地打印,部署到web网站非常简单,此博文介绍的是混合部署方式,该方式兼容所有浏览器,当浏览器支持np插件的时候,使用Lodop插件方式,浏览器不支持np插件,会用C-Lodop服 ...
- jQuery 操作Cookie
一个轻量级的cookie 插件,可以读取.写入.删除 cookie. 下载地址:http://plugins.jquery.com/cookie/ (在实际中可以用这个保存cookie保存用户的习惯, ...
- 微软已发布 Windows 10 Timeline 功能的官方 Chrome 插件
微软已发布 Windows 10 Timeline 功能的官方 Chrome 插件,这个插件名为 Web Activities,功能是跨 Windows 10 和 Microsoft Launcher ...
- 数据库中事务的四大特性(ACID)
本篇讲诉数据库中事务的四大特性(ACID),并且将会详细地说明事务的隔离级别. 如果一个数据库声称支持事务的操作,那么该数据库必须要具备以下四个特性: ⑴ 原子性(Atomicity) 原子性是指事务 ...
- NFS共享存储的使用
概述 NFS 是Network File System的缩写,即网络文件系统.一种使用于分散式文件系统的协定,由Sun公司开发,于1984年向外公布.功能是通过网络让不同的机器.不同的操作系统能够彼此 ...
- web scraper——安装【一】
准备工作 工欲善其事必先利其器,既然是要安装web scraper一些***的工具是必然不可缺少的,如果没有的话,先下载个蓝灯用用吧. 蓝灯最新版下载地址 下载安装完成后双击打开即可,这时候会弹出一个 ...
- Code POJ - 1850 组合数学
题意 :字符串从a=1 b=2 c=3....z=26 ab=27开始编号 每个都是升序的 给出字符串问是几号 思路:主要是要看n位字符串有多少个 这里需要用组合数学的思想 组合数用杨辉三角形递推 ...
- LOJ6053 简单的函数 【Min_25筛】【埃拉托斯特尼筛】
先定义几个符号: []:若方括号内为一个值,则向下取整,否则为布尔判断 集合P:素数集合. 题目分析: 题目是一个积性函数.做法之一是洲阁筛,也可以采用Min_25筛. 对于一个可以进行Min_25筛 ...
- THUWC2018游记
前言 这次THUWC有pretest,非常不错.但还是要对拍. DAY1 上午先去报个到. 下午1:30开始比赛,状态还是很好的. 开场先看题. 发现t1是个联赛贪心题,就花了半个小时写完+拍完了. ...
- bzoj 2054: 疯狂的馒头(线段树||并查集)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2054 线段树写法: 点的颜色只取决于最后一次染的颜色,所以我们可以倒着维护,如果当前区间之前 ...