原文链接https://www.cnblogs.com/zhouzhendong/p/HDU4779.html

题目传送门 - HDU4779

题意

  $T$ 组数据。

  给定一个 $n\times m$ 的棋盘,要在上面放最多 $P$ 个重塔和最多 $Q$ 个轻塔。

  每一个塔都会攻击同行和同列的塔。轻塔不能承受任何攻击。重塔最多可以承受一个塔的攻击。

  所有重塔全是一样的,所有轻塔也是一样的,但是重塔和轻塔不同。

  现在问你有多少放置塔(至少放一个塔)的方案。答案对于 $1e9+7$ 取模。

  $1\leq T,n,m,P,Q\leq 200$

题解

  听说这一题 Cyanic 读错两次题意还出了一道毒瘤题给我们阿掉他的机会??

  我们写考虑枚举有两个重塔的行和列的个数。

  假设上面的两个量分别为 $i$ 和 $j$ 。

  则剩余行数和列数分别为 $n-i-2j$ 和 $m-2i-j$ ,剩余重塔个数为 $P-2i-2j$ 。

  我们可以预处理 $dp_{i}{j}$ 为在 $i$ 个行或列中选择 $j$ 对 行或列 的方案数。

  则显然答案为 $\binom{i}{2j}\ \ \ \ \ \ \ \ \times \ \ \ \ \ \ \ \ (2j)! \ \ \ \ \ \ \ \ ÷ \ \ \ \ \ \ \ \ 2^{j}$

  表示的意义: $i$ 行选 $2j$ 行    全排列     并依次选择每一对行或列     每一对行或列都有两种排列方式,总共被算了 $2^{j}$ 次,要除掉。

  然后枚举在剩余的 $n-i-2j$ 行和 $m-2i-j$ 列中放多少个塔。

  需要预处理一下组合数的前缀和。

  然后可以用组合数算出当前情况对答案的贡献。具体自己看代码吧。这里不展开赘述。

  注意一下,要特判掉不放塔的情况。

代码

#include <bits/stdc++.h>
using namespace std;
const int N=405,mod=1e9+7;
int T,n,m,P,Q;
int C[N][N],Fac[N],Pow[N],s[N][N],dp[N][N];
int main(){
Fac[0]=Pow[0]=1;
for (int i=0;i<N;i++)
C[i][0]=s[i][0]=1;
for (int i=1;i<N;i++)
Fac[i]=1LL*Fac[i-1]*i%mod,Pow[i]=1LL*Pow[i-1]*500000004%mod;
for (int i=1;i<N;i++)
for (int j=1;j<=i;j++){
C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
s[i][j]=(s[i][j-1]+C[i][j])%mod;
}
for (int i=0;i<N/2;i++)
for (int j=0;j<N/2;j++)
dp[i][j]=1LL*C[i][j*2]*Fac[2*j]%mod*Pow[j]%mod;
scanf("%d",&T);
while (T--){
scanf("%d%d%d%d",&n,&m,&P,&Q);
int ans=0;
for (int r=0;r*2<=m;r++)
for (int c=0;c*2<=n;c++){
int RR=n-c*2-r,CC=m-r*2-c,p=P-r*2-c*2;
if (RR<0||CC<0||p<0)
continue;
int mi=min(RR,CC),ma=max(RR,CC);
int Mul=1LL*C[n-2*c][r]%mod*C[m-2*r][c]%mod*dp[m][r]%mod*dp[n][c]%mod;
int tot=0,lim=min(mi,p+Q);
for (int i=0;i<=lim;i++){
int M2=s[i][min(p,i)];
if (max(i-Q,0)-1>=0)
M2=(M2-s[i][max(i-Q,0)-1]+mod)%mod;
if (r||c||i)
tot=(1LL*M2*C[ma][i]%mod*C[mi][i]%mod*Fac[i]+tot)%mod;
}
ans=(1LL*Mul*tot+ans)%mod;
}
printf("%d\n",ans);
}
return 0;
}

  

HDU4779 Tower Defense 组合数学的更多相关文章

  1. hdu 4779 Tower Defense (思维+组合数学)

    Tower Defense Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) ...

  2. HDU 4779:Tower Defense

    Tower Defense Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others)T ...

  3. dp --- hdu 4939 : Stupid Tower Defense

    Stupid Tower Defense Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  4. hdu4939 Stupid Tower Defense (DP)

    2014多校7 第二水的题 4939 Stupid Tower Defense Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131 ...

  5. Stupid Tower Defense

    Problem Description FSF is addicted to a stupid tower defense game. The goal of tower defense games ...

  6. 初识Tower Defense Toolkit

    Tower Defense Toolkit 做塔防游戏的插件 主要层次如下图: 1GameControl _ _Game Control(Script) _ _ _Spawn Manager _ _ ...

  7. HDU4939Stupid Tower Defense (有思想的dp)

    Stupid Tower Defense Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Oth ...

  8. Tower Defense Game

    Tower Defense Game 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 There is a tower defense game with n level ...

  9. hihoCoder #1199 : Tower Defense Game ——(树型dp)

    题目链接:https://hihocoder.com/problemset/problem/1199. 题意:一棵以1为根的树,每个点有一个p值和q值,到这个点需要当前分数大于等于p,然后消耗掉(p- ...

随机推荐

  1. socket原理-基于UDP的套接字-基于TCP实现远程命令-粘包

  2. Spring+SpringMVC+MyBatis的整合

    1.基本概念   1.1.Spring Spring是一个开源框架,Spring是于2003 年兴起的一个轻量级的Java 开发框架,由Rod Johnson 在其著作Expert One-On-On ...

  3. spring boot 整合 shiro

    shrio官网:https://shiro.apache.org/ Apache Shiro是一个功能强大且易于使用的Java安全框架,可执行身份验证,授权,加密和会话管理.借助Shiro易于理解的A ...

  4. LeetCode(108):将有序数组转换为二叉搜索树

    Easy! 题目描述: 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定有序数组 ...

  5. laravel zh-CN

    位置: 调用:

  6. 如何编辑PDF文件,怎么使用PDF裁剪页面工具

    在编辑PDF文件的时候,往往会有很多的小技巧可以使用,在编辑PDF文件的时候,怎么对文件的页面进行裁剪呢,不会的话,看看下面的文章吧,小编已经为大家整理好了哦. 1.打开运行PDF编辑器,在编辑器中打 ...

  7. Kali安装问题解决方案

    一.对今天安装Kalilinux  失败的原因做一个简单的总结, 1.安装之前的电脑状况,电脑配置Windows7 64位旗舰版配置,虚拟版本是VMware Workstation Pro14 ver ...

  8. 分布式事务XA

    1.什么是分布式事务 分布式事务就是指事务的参与者.支持事务的服务器.资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上.以上是百度百科的解释,简单的说,就是一次大的操作由不同的小操作组成 ...

  9. 20165314 学习基础和C语言基础调查

    技能学习心得 你有什么技能比大多人(超过90%以上)更好?针对这个技能的获取你有什么成功的经验?与老师博客中的学习经验有什么共通之处? 从小我的父母就逼着我学习很多技能,比如钢琴,围棋,书法等,不过很 ...

  10. ready()事件;使外置JS代码正常运行

    JavaScript代码放在哪里? 浏览器在渲染HTML页面时,是从头到尾,一行一行地检查执行的.如果JavaScript代码在前面,HTML元素在后面,遇到JavaScript选择一个还未渲染的HT ...