初学Python——列表生成式、生成器和迭代器
一、列表生成式
假如现在有这样一个需求:快速生成一个列表[1,2,3,4,5,6,7,8,9,10],该如何实现?
在不知道列表生成式的情况下,可能会这样写:
a=[1,2,3,4,5,6,7,8,9,10]
如果要每个值+1呢?可能会这样:
for index,i in enumerate(a):
a[index] +=1
print(a)
不够方便,这里讲一个快速生成列表的方法:列表生成式。意思就是立即生成列表。
生成一个1到10的列表:
a = [i+1 for i in range(10)]
print( a)
# output:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
生成一个2~20的偶数列表:
a=[ i*2 for i in rang(1,11)]
print(a)
# output:
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
它相当于:
a=[]
for i in range(1,11): #列表生成式
a.append(i*2)
print(a)
生成的列表已经存在在内存中。
二、生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的列表,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个生成器,只需要把列表生成式中的 [ ] 改成 ( ) 即可。
b=[i*2 for i in rang(10)] # 列表生成式
print(b) c=( i*2 for i in range(10) ) #生成器
print(c) # output:
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
<generator object <genexpr> at 0x000001D0089B45C8>
输出c,得到的是数据类型说明和它的内存地址。
生成器只是名义上生成一个列表,但实际上却没有占用那么大内存,生成器只有调用的时候才会生成相应的数据。
如果要打印生成器的数据,则需要.__next__()方法
print(c.__next__()) # 输出第一个数
0
print(c.__next__()) # 输出第二个数
1
print(c.__next__()) # 输出第三个数
2
print(c.__next__()) # 输出第四个数
3
print(c.__next__()) # 输出第五个数
4
如果我只需要当中的最后一个数据呢?能不能直接输出?
抱歉,不能。而且,生成器的数据只能从前往后去访问,不能从后往前去访问,在内存中只保留一个值,也就是说,访问过的数据已经无法再次访问。
如果生成器有很多的数据,要全部输出,有没有简便的写法?
抱歉,没有,您只能一个一个地输出。
当然,像上面那样不断调用.__next__()还是太坑爹了,可以用for去迭代它(生成器也是可迭代对象):
g = (x * x for x in range(10))
for n in g:
print(n)
那,,我还要生成器有卵用??
还是有点卵用的,生成器一般依托于函数实现,比如,我先定义一个函数fib(),函数内定义了数列的推算规则
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done' # 注释:
a, b = b, a + b 相当于:
t = (b, a + b) # t是一个tuple
a = t[0]
b = t[1]
它不必写出显式变量 t
如果给fib()传参10,它将输出一连串的数字,可以组成一个数列:
1,1,2,3,5,8,13,21,34,55
此时的fib函数,已经非常接近生成器了,只需要一个yield即可,
def fib(max): #当函数中有yield出现时,不能将其简单视为函数,是一个生成器。
"生成器"
n,a,b=0,0,1
while n<max:
yield b #yield保存了函数当前的中断状态,返回当前b的值
a,b=b,a+b
n=n+1 #计数器
return "done"
此时,fib(10)是一个生成器,
f = fib(6)
print(f)
<generator object fib at 0x104feaaa0>
这里最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
来一个一个地输出它的值:
f=fib(10)
print(f)
print(f.__next__())
print(f.__next__())
print(f.__next__())
print(f.__next__())
因为只能一个一个地输出,且不能得知长度,所以总会有越界的时候,会报一个异常StopIteration,导致程序停止
所以需要捕获异常:
while 1:
try: #如果没有出现异常,执行下面语句
x=next(g)
print("g:",x)
except StopIteration as e: #如果出现异常StopIteration,把它赋给e,执行下面的语句
print(e.value)
break
前面讲到,生成器只能一个一个地取出数据,在fib函数执行过程中会中断,为什么要这样呢?有什么用吗?
它厉害在:可以在单线程的情况下实现并发效果,举个例子:
import time def custumer(name):
print("{0}准备来吃包子了".format(name))
while 1:
baozi = yield #每次运行到这一行时都会中断
print("包子{0}来了,被{1}吃掉了".format(baozi,name)) def producer(name):
c1=custumer("老大")
c2=custumer("老二")
c1.__next__()
c2.__next__() # next 只是在调用yield
print("{0}开始做包子啦!".format(name))
for i in range(1,15,2):
time.sleep(1)
print("做了两个包子")
c1.send(i) # send 调用yield的同时给它传值
c2.send(i+1) producer("alex")
如果在自己的解释器上执行,会发现一个程序有三个任务交错切换运行,看上去就像三个任务同时在进行。
三、迭代器
我们已经知道,可以直接作用于for循环的数据类型有以下几种:
一类是集合数据类型,如list、tuple、dict、set、str等;
一类是generator,包括生成器和带yield的generator function。
这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。
可以使用isinstance()判断一个对象是否是Iterable对象。
for循环本质上时不断调用next()函数实现的:
a=[1,2,3,4,5]
for x in a:
print(x)
#完全等价于
it=iter(a) # 将列表转化成迭代器对象
while 1:
try:
x=next(it) #获得下一个值
print(x)
except StopIteration:
break #遇到StopIteration异常就跳出循环
在文件操作时,
for line in f:
print(line)
每次输出其实都是调用next()函数,在Python3中已经看不出是一个迭代器了。
初学Python——列表生成式、生成器和迭代器的更多相关文章
- Python 列表生成式 生成器
[x for x in os.listdir("F:\XXX")] 生成器(x * x for x in range(10)) 如果列表元素按照某种算法推算出来,那我们就可以在循环 ...
- python协程函数应用 列表生成式 生成器表达式
协程函数应用 列表生成式 生成器表达式 一.知识点整理: 1.可迭代的:对象下有_iter_方法的都是可迭代的对象 迭代器:对象._iter_()得到的结果就是迭代器 迭代器的特性: 迭代器._n ...
- Python列表生成式(入门9)
转载请标明出处: http://www.cnblogs.com/why168888/p/6407984.html 本文出自:[Edwin博客园] Python列表生成式 1. 生成列表 L = [] ...
- Python 列表生成式 & 字典生成式
Python 列表生成式 & 字典生成式 通过生成式可以更加简洁地生成列表和字典 列表生成式 对比 直接生成数据后加入列表示例: user_list = list() for i in ran ...
- Python 列表生成式、生成器、迭代器
列表生成式 列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式. 如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么 ...
- python 列表生成式,生成器&迭代器
列表生成式: 需求:要对列表 [0,1,2,3,4,5,6,7,8,9]的每个元素加1 用列表生成式一步搞定: li = [i+1 for i in range(10)] # 这种写法就叫列表生成式 ...
- Python之旅Day5 列表生成式 生成器 迭代器 装饰器
装饰器 器即函数,装饰即修饰,意指为其他函数添加新功能 装饰器定义:本质就是函数,功能是为其他函数添加新功能 装饰器涉及的知识点= 高阶函数+函数嵌套+闭包 在遵循下面两个原则的前提下为被装饰者新功能 ...
- python中的生成器,迭代器及列表生成式
列表生成器: 即List Comprehensions. 在python中,可通过内置的强大有简单的生成式来创建列表.例如创建一个1到10的列表list [1, 2, 3, 4, 5, 6, 7, ...
- Py修行路 python基础 (十二) 协程函数应用 列表生成式 生成器表达式
一.知识点整理: 1.可迭代的:对象下有_iter_方法的都是可迭代的对象 迭代器:对象._iter_()得到的结果就是迭代器 迭代器的特性: 迭代器._next_() 取下一个值 优点: 1.提供了 ...
随机推荐
- oppo手机屏幕录制的详细操作技巧
说起屏幕录制,肯定我们都使用过各式各样的录屏工具,不管是手机或者电脑自带的,还是第三方录屏工具,是不是都出现过不能正常录屏的,或者没有把声音录制下来等一系列问题,为了给更多的人节约时间,因为笔者使用的 ...
- Dynamics AX 2012 性能优化之 SQL Server 复制
Dynamics AX 2012 性能优化之 SQL Server 复制 分析数据滞后 在博文 Dynamics AX 2012 在BI分析中建立数据仓库的必要性 里,Reinhard 阐述了在 AX ...
- QTP入门——玩玩小飞机
1.什么是QTP? 百度百科中对QTP是这么介绍的: ——”QTP是QuickTest Professional的简称,是一种自动化测试工具.使用QTP的目的是想用它来执行重复的自动化测试,主要是用于 ...
- Cannot obtain the required interface ("IID_IDBCreateCommand") from OLE DB provider "OraOLEDB.Oracle" for linked server xxxx
今天遇到了一个关于LINKED SERVER查询报错的案例,链接服务器链接ORACLE数据库,测试没有错误,但是执行脚本的时候,报如下错误: Msg 7399, Level 16, State 1 ...
- shell编程—简单的使用(二)
使用shell编辑.sh使其输出hello tynam 1.新建一个.sh文件,然后进行编辑 vi hello_tynam.sh 2.进行编辑,先按i键进行激活,然后输入echo hello tyna ...
- 如何实现javascript js 类命名空间的写法
转载 猫猫小屋http://www.maomao365.com/?p=823 在C#中有namespace概念,java中有package的概念,有了这些概念之后,在系统的运行时,每一个方法就会拥有唯 ...
- windows下安装mysql
windows 下安装mysql 1.先下载好 mysql5.7 版本的安装包,可以去官网自己下载,也可以从我的百度云分享 里面下载: 链接: https://pan.baidu.com/s/1VXk ...
- Tomcat优化配置
1.环境: 系统:Windows.Linux Tomcat版本:9 2.编码与性能调优 server.xml文件: <Connector port="8080" connec ...
- 浅析data:image/png;base64的应用
...我也是加一个网安交流群发现了他们的入群密码是这个 数据:图像/ PNG; BASE64,iVBORw0KGgoAAAANSUhEUgAAANwAAAAoCAIAAAAaOwPZAAAAAXNSR ...
- Spring的jdbc模板3:完成CURD操作
测试类代码如下 package zcc.spring_jdbc.demo2; import java.sql.ResultSet; import java.sql.SQLException; impo ...