在这篇文章里,我们模拟了一个场景,实时分析订单数据,统计实时收益。

场景模拟

我试图覆盖工程上最为常用的一个场景:

1)首先,向Kafka里实时的写入订单数据,JSON格式,包含订单ID-订单类型-订单收益

2)然后,spark-streaming每十秒实时去消费kafka中的订单数据,并以订单类型分组统计收益

3)最后,spark-streaming统计结果实时的存入本地MySQL。

前提条件

安装

1)spark:我使用的yarn-client模式下的spark,环境中集群客户端已经搞定

2)zookeeper:我使用的是这个集群:10.93.21.21:2181,10.93.18.34:2181,10.93.18.35:2181

3)kafka:我使用的是standalone模式:10.93.21.21:9093

4)mysql:10.93.84.53:3306

语言

python:pykafka,pip install pykafka

java:spark,spark-streaming

下面开始

1、数据写入kafka

  • kafka写入

我们使用pykafka模拟数据实时写入,代码如下:

kafka_producer.py

# -* coding:utf8 *-
import time
import json
import uuid
import random
import threading
from pykafka import KafkaClient # 创建kafka实例
hosts = '10.93.21.21:9093'
client = KafkaClient(hosts=hosts) # 打印一下有哪些topic
print client.topics # 创建kafka producer句柄
topic = client.topics['kafka_spark']
producer = topic.get_producer() # work
def work():
while 1:
msg = json.dumps({
"id": str(uuid.uuid4()).replace('-', ''),
"type": random.randint(1, 5),
"profit": random.randint(13, 100)})
producer.produce(msg) # 多线程执行
thread_list = [threading.Thread(target=work) for i in range(10)]
for thread in thread_list:
thread.setDaemon(True)
thread.start() time.sleep(60) # 关闭句柄, 退出
producer.stop()

可以看到,我们写入的形式是一个json,订单id是一个uuid,订单类型type从1-5随机,订单收益profit从13-100随机,形如

{"id": ${uid}, "type": 1, "profit": 30}

注意:1)python对kafka的读写不需要借助zookeeper,2)使用多线程的形式写入,让数据量具有一定的规模。

执行producer,会持续写入数据1分钟。

python kafka_producer.py
  • 验证一下

kafka_consumer.py

# -* coding:utf8 *-
from pykafka import KafkaClient hosts = '10.93.21.21:9093'
client = KafkaClient(hosts=hosts)
# 消费者
topic = client.topics['kafka_spark']
consumer = topic.get_simple_consumer(consumer_group='test', auto_commit_enable=True, auto_commit_interval_ms=1,
consumer_id='test')
for message in consumer:
if message is not None:
print message.offset, message.value

执行,可以消费kafka刚才写入的数据

python kafka_consumer.py

2、spark-streaming

1)先解决依赖

其中比较核心的是spark-streaming和kafka集成包spark-streaming-kafka_2.10,还有spark引擎spark-core_2.10

json和mysql看大家爱好。

pom.xml

<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.10</artifactId>
<version>1.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>1.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.6.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.19</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.38</version>
</dependency>
<dependency>
<groupId>commons-dbcp</groupId>
<artifactId>commons-dbcp</artifactId>
<version>1.4</version>
</dependency>
</dependencies>

2)MySQL准备

  • 建表

我们的结果去向是MySQL,先建立一个结果表。

id:主键,自增id

type:订单类型

profit:每个spark batch聚合出的订单收益结果

time:时间戳

CREATE TABLE `order` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`type` int(11) DEFAULT NULL,
`profit` int(11) DEFAULT NULL,
`time` mediumtext,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=56 DEFAULT CHARSET=utf8
  • Java客户端

采用了单例线程池的模式简单写了一下。

ConnectionPool.java

package com.xiaoju.dqa.realtime_streaming;

import java.sql.Connection;
import java.sql.DriverManager;
import java.util.LinkedList; public class ConnectionPool {
private static LinkedList<Connection> connectionQueue; static {
try {
Class.forName("com.mysql.jdbc.Driver");
} catch (ClassNotFoundException e) {
e.printStackTrace();
}
} public synchronized static Connection getConnection() {
try {
if (connectionQueue == null) {
connectionQueue = new LinkedList<Connection>();
for (int i = 0; i < 5; i++) {
Connection conn = DriverManager.getConnection(
"jdbc:mysql://10.93.84.53:3306/big_data",
"root",
"1234");
connectionQueue.push(conn);
}
}
} catch (Exception e) {
e.printStackTrace();
}
return connectionQueue.poll(); }
public static void returnConnection(Connection conn){connectionQueue.push(conn);}
}

3)代码实现

我用java写的,不会用scala很尴尬。

即时用java整个的处理过程依然比较简单。跟常见的wordcount也没有多大的差别。

SparkStreaming特点

spark的特点就是RDD,通过对RDD的操作,来屏蔽分布式运算的复杂度。

而spark-streaming的操作对象是RDD的时间序列DStream,这个序列的生成是跟batch的选取有关。例如我这里Batch是10s一个,那么每隔10s会产出一个RDD,对RDD的切割和序列的生成,spark-streaming对我们透明了。唯一暴露给我们的DStream和原生RDD的使用方式基本一致。

这里需要讲解一下MySQL写入注意的事项。

MySQL写入

在处理mysql写入时使用了foreachPartition方法,即,在foreachPartition中使用borrow mysql句柄。

这样做的原因是:

1)你无法再Driver端创建mysql句柄,并通过序列化的形式发送到worker端

2)如果你在处理rdd中创建mysql句柄,很容易对每一条数据创建一个句柄,在处理过程中很快内存就会溢出。

OrderProfitAgg.java

package com.xiaoju.dqa.realtime_streaming;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import scala.Tuple2; import java.sql.Connection;
import java.sql.Statement;
import java.util.*; /*
* 生产者可以选用kafka自带的producer脚本
* bin/kafka-console-producer.sh --broker-list localhost:9093 --topic test
* */
public class OrderProfitAgg { public static void main(String[] args) throws InterruptedException {
/*
* kafka所注册的zk集群
* */
String zkQuorum = "10.93.21.21:2181,10.93.18.34:2181,10.93.18.35:2181"; /*
* spark-streaming消费kafka的topic名称, 多个以逗号分隔
* */
String topics = "kafka_spark,kafka_spark2"; /*
* 消费组 group
* */
String group = "bigdata_qa"; /*
* 消费进程数
* */
int numThreads = 2; /*
* 选用yarn队列模式, spark-streaming程序的app名称是"order profit"
* */
SparkConf sparkConf = new SparkConf().setMaster("yarn-client").setAppName("order profit"); /*
* 创建sc, 全局唯一, 设置logLevel可以打印一些东西到控制台
* */
JavaSparkContext sc = new JavaSparkContext(sparkConf);
sc.setLogLevel("WARN"); /*
* 创建jssc, spark-streaming的batch是每10s划分一个
* */
JavaStreamingContext jssc = new JavaStreamingContext(sc, Durations.seconds(10)); /*
* 准备topicMap
* */
Map<String ,Integer> topicMap = new HashMap<String, Integer>();
for (String topic : topics.split(",")) {
topicMap.put(topic, numThreads);
} /*
* kafka数据流
* */
List<JavaPairReceiverInputDStream<String, String>> streams = new ArrayList<JavaPairReceiverInputDStream<String, String>>();
for (int i = 0; i < numThreads; i++) {
streams.add(KafkaUtils.createStream(jssc, zkQuorum, group, topicMap));
}
/*
* 从kafka消费数据的RDD
* */
JavaPairDStream<String, String> streamsRDD = streams.get(0);
for (int i = 1; i < streams.size(); i++) {
streamsRDD = streamsRDD.union(streams.get(i));
} /*
* kafka消息形如: {"id": ${uuid}, "type": 1, "profit": 35}
* 统计结果, 以type分组的总收益
* mapToPair, 将kafka消费的数据, 转化为type-profit key-value对
* reduceByKey, 以type分组, 聚合profit
* */
JavaPairDStream<Integer, Integer> profits = streamsRDD.mapToPair(new PairFunction<Tuple2<String, String>, Integer, Integer>() {
@Override
public Tuple2<Integer, Integer> call(Tuple2<String, String> s_tuple2) throws Exception {
JSONObject jsonObject = JSON.parseObject(s_tuple2._2);
return new Tuple2<Integer, Integer>(jsonObject.getInteger("type"), jsonObject.getInteger("profit"));
}
}).reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer i1, Integer i2) throws Exception {
return i1 + i2;
}
}); /*
* 输出结果到MySQL
* 需要为每一个partition创建一个MySQL句柄, 使用foreachPartition
* */
profits.foreachRDD(new Function<JavaPairRDD<Integer, Integer>, Void>() {
@Override
public Void call(JavaPairRDD<Integer, Integer> integerIntegerJavaPairRDD) throws Exception { integerIntegerJavaPairRDD.foreachPartition(new VoidFunction<Iterator<Tuple2<Integer, Integer>>>() {
@Override
public void call(Iterator<Tuple2<Integer, Integer>> tuple2Iterator) throws Exception {
Connection connection = ConnectionPool.getConnection();
Statement stmt = connection.createStatement();
long timestamp = System.currentTimeMillis();
while(tuple2Iterator.hasNext()) {
Tuple2<Integer, Integer> tuple = tuple2Iterator.next();
Integer type = tuple._1;
Integer profit = tuple._2;
String sql = String.format("insert into `order` (`type`, `profit`, `time`) values (%s, %s, %s)", type, profit, timestamp);
stmt.executeUpdate(sql);
}
ConnectionPool.returnConnection(connection);
}
});
return null;
}
}); /*
* 开始计算, 等待计算结束
* */
jssc.start();
try {
jssc.awaitTermination();
} catch (Exception ex) {
ex.printStackTrace();
} finally {
jssc.close();
}
}
}

4)打包方法

编写pom.xml build tag。

mvn clean package打包即可。

pom.xml

<build>
<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<archive>
<manifest>
<!--这里要替换成jar包main方法所在类 -->
<!--<mainClass>com.bigdata.qa.hotdog.driver.WordCount</mainClass>-->
<mainClass>com.xiaoju.dqa.realtime_streaming.OrderProfitAgg</mainClass> </manifest>
</archive>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id> <!-- this is used for inheritance merges -->
<phase>package</phase> <!-- 指定在打包节点执行jar包合并操作 -->
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.6</source>
<target>1.6</target>
</configuration>
</plugin>
</plugins>
</build>

3、执行与结果

1)执行kafka_producer.py

python kafka_producer.py

2) 执行spark-streaming

这里使用的是默认参数提交yarn队列。

spark-submit --queue=root.XXXX realtime-streaming-1.0-SNAPSHOT-jar-with-dependencies.jar

3)查看结果

到MySQL中查看结果,每隔10秒会聚合出type=1-5的5条数据。

例如第一条数据,就是type=4这种类型的业务,在10s内收益是555473元。业务量惊人啊。哈哈。

完结。

spark-streaming集成Kafka处理实时数据的更多相关文章

  1. spark streaming集成kafka

    Kakfa起初是由LinkedIn公司开发的一个分布式的消息系统,后成为Apache的一部分,它使用Scala编写,以可水平扩展和高吞吐率而被广泛使用.目前越来越多的开源分布式处理系统如Clouder ...

  2. Spark Streaming和Kafka整合保证数据零丢失

    当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢失机制.为了体验这个关键的特性,你需要满足以下几个先决条件: 1.输入的数据来自可靠的数据源 ...

  3. spark streaming集成kafka接收数据的方式

    spark streaming是以batch的方式来消费,strom是准实时一条一条的消费.当然也可以使用trident和tick的方式来实现batch消费(官方叫做mini batch).效率嘛,有 ...

  4. 解决spark streaming集成kafka时只能读topic的其中一个分区数据的问题

    1. 问题描述 我创建了一个名称为myTest的topic,该topic有三个分区,在我的应用中spark streaming以direct方式连接kakfa,但是发现只能消费一个分区的数据,多次更换 ...

  5. Spark Streaming消费Kafka Direct方式数据零丢失实现

    使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以 ...

  6. spark streaming 整合 kafka(一)

    转载:https://www.iteblog.com/archives/1322.html Apache Kafka是一个分布式的消息发布-订阅系统.可以说,任何实时大数据处理工具缺少与Kafka整合 ...

  7. Spark Streaming和Kafka整合开发指南(一)

    Apache Kafka是一个分布式的消息发布-订阅系统.可以说,任何实时大数据处理工具缺少与Kafka整合都是不完整的.本文将介绍如何使用Spark Streaming从Kafka中接收数据,这里将 ...

  8. Spark Streaming和Kafka整合开发指南(二)

    在本博客的<Spark Streaming和Kafka整合开发指南(一)>文章中介绍了如何使用基于Receiver的方法使用Spark Streaming从Kafka中接收数据.本文将介绍 ...

  9. Spark Streaming和Kafka集成深入浅出

    写在前面 本文主要介绍Spark Streaming基本概念.kafka集成.Offset管理 本文主要介绍Spark Streaming基本概念.kafka集成.Offset管理 一.概述 Spar ...

随机推荐

  1. ThinkJS 开发node后端 使用 简介

    ThinkJS 是一款面向未来开发的 Node.js 框架,整合了大量的项目最佳实践,让企业级开发变得如此简单.高效.从 3.0 开始,框架底层基于 Koa 2.x  实现,兼容 Koa 的所有功能. ...

  2. Sqlserver自动优化

     (1)select a.* from tb1 a left join tb2  b on a.id=b.id where a.name='1' (2)select * from (select a. ...

  3. Jenkins pipeline shared library

    Jenkinsfile https://jenkins.io/doc/book/pipeline/jenkinsfile/ Jenkins Pipeline is a suite of plugins ...

  4. lua 立即执行函数

    背景 不同文件中,lua提供模块写法, 使用local修饰,可以将变量或者函数,声明为模块内有效,例如 模块暴漏变量使用 return 表的方式. local aafunc = function() ...

  5. luogu 2704 炮兵阵地 状压dp

    状压的基础题吧 第一次看感觉难上天,后来嘛就.. 套路:先根据自身状态筛出可行状态,再根据地图等其他限制条件筛选适合的状态加入答案 f i,j,k 分别代表 行数,本行状态,上行状态,再累加答案即可 ...

  6. Debian Security Advisory(Debian安全报告) DSA-4411-1 firefox-esr security update

    Debian Security Advisory(Debian安全报告) DSA-4411-1  firefox-esr security update Package :firefox-esr CV ...

  7. TensorFlow从入门到理解(三):你的第一个卷积神经网络(CNN)

    运行代码: from __future__ import print_function import tensorflow as tf from tensorflow.examples.tutoria ...

  8. 第27月第6天 gcd timer

    1.gcd timer 因为如果不用GCD,编码需要注意以下三个细节: 1.必须保证有一个活跃的runloop. performSelector和scheduledTimerWithTimeInter ...

  9. codeforces706E

    好精妙的一道题啊 传送门:here 大致题意:有一个$ n*m$的矩阵,q次询问每次交换给定两个无交矩阵的对应元素,求操作后的最终矩阵? 数据范围:$ n,m<=1000, q<=1000 ...

  10. Leetcode#657. Judge Route Circle(判断路线成圈)

    题目描述 初始位置 (0, 0) 处有一个机器人.给出它的一系列动作,判断这个机器人的移动路线是否形成一个圆圈,换言之就是判断它是否会移回到原来的位置. 移动顺序由一个字符串表示.每一个动作都是由一个 ...