Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 11049   Accepted: 3767   Special Judge

Description

John is the only priest in his town. September 1st is the John's busiest day in a year because there is an old legend in the town that the couple who get married on that day will be forever blessed by the God of Love. This year N couples plan to get married on the blessed day. The i-th couple plan to hold their wedding from time Si to time Ti. According to the traditions in the town, there must be a special ceremony on which the couple stand before the priest and accept blessings. The i-th couple need Di minutes to finish this ceremony. Moreover, this ceremony must be either at the beginning or the ending of the wedding (i.e. it must be either from Si to Si + Di, or from Ti - Di to Ti). Could you tell John how to arrange his schedule so that he can present at every special ceremonies of the weddings.

Note that John can not be present at two weddings simultaneously.

Input

The first line contains a integer N ( 1 ≤ N ≤ 1000). 
The next N lines contain the SiTi and DiSi and Ti are in the format of hh:mm.

Output

The first line of output contains "YES" or "NO" indicating whether John can be present at every special ceremony. If it is "YES", output another N lines describing the staring time and finishing time of all the ceremonies.

Sample Input

2
08:00 09:00 30
08:15 09:00 20

Sample Output

YES
08:00 08:30
08:40 09:00

Source

题意:

 
题意:有一个小镇上只有一个牧师。这个小镇上有一个传说,在九月一日结婚的人会受到爱神的保佑,但是要牧师举办一个仪式。这个仪式要么在婚礼刚刚开始的时候举行,要么举行完婚礼正好结束。 现在已知有n场婚礼,告诉你每一场的开始和结束时间,以及举行仪式所需要的时间。问牧师能否参加所有的婚礼,如果能则输出一种方案。
 
对于每一场婚礼,我们可以把它抽象成一个点对
对于冲突的点,我们可以看做是利用选A不能选B的关系来进行限制
这样这道题就变成了一道2-SAT问题
然后按照套路用tarjan缩点,暴力建反向图,拓扑排序
 
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<vector>
#include<queue>
#define Pair pair<int,int>
#define F first
#define S second
using namespace std;
const int MAXN=1e6+;
//#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<20,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read()
{ char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
Pair P[MAXN];
bool check(int x,int y)
{
if((P[x].S<=P[y].F)||(P[x].F>=P[y].S)) return ;
else return ;
}
struct node
{
int u,v,nxt;
}edge[MAXN];
int head[MAXN],num=;
inline void AddEdge(int x,int y)
{
edge[num].u=x;
edge[num].v=y;
edge[num].nxt=head[x];
head[x]=num++;
}
int dfn[MAXN],low[MAXN],vis[MAXN],color[MAXN],colornum=,tot;
stack<int>s;
void tarjan(int now)
{
dfn[now]=low[now]=++tot;
vis[now]=;
s.push(now);
for(int i=head[now];i!=-;i=edge[i].nxt)
{
if(!dfn[edge[i].v])
tarjan(edge[i].v),low[now]=min(low[now],low[edge[i].v]);
else if(vis[edge[i].v])
low[now]=min(low[now],dfn[edge[i].v]);
}
if(dfn[now]==low[now])
{
int h;colornum++;
do
{
h=s.top();s.pop();
color[h]=colornum;
vis[h]=;
}while(h!=now);
}
}
vector<int>E[MAXN];
int enemy[MAXN],inder[MAXN],ans[MAXN];
void Topsort()
{
queue<int>q;
for(int i=;i<=colornum;i++)
if(inder[i]==)
q.push(i);
while(q.size()!=)
{
int p=q.front();q.pop();
if(!ans[p]) ans[p]=,ans[enemy[p]]=-;
for(int i=;i<E[p].size();i++)
{
inder[E[p][i]]--;
if(inder[E[p][i]]==) q.push(E[p][i]);
}
}
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
memset(head,-,sizeof(head));
int N=read();
for(int i=;i<=N;i++)
{
int a,b,c,d,len;
scanf("%d:%d %d:%d %d",&a,&b,&c,&d,&len);
P[i].F=a*+b;
P[i].S=a*+b+len;
P[i+N].F=c*+d-len;
P[i+N].S=c*+d;
}
for(int i=;i<=N;i++)
{
for(int j=;j<=N;j++)
{
if(i==j) continue;
if(check(i,j)) AddEdge(i,j+N);
if(check(i,j+N)) AddEdge(i,j);
if(check(i+N,j)) AddEdge(i+N,j+N);
if(check(i+N,j+N)) AddEdge(i+N,j);
}
}
for(int i=;i<=N;i++)
if(!dfn[i])
tarjan(i);
for(int i=;i<=N;i++)
if(color[i]==color[i+N])
{printf("NO\n");return ;}
printf("YES\n");
for(int i=;i<=N;i++)
enemy[color[i]]=color[i+N],
enemy[color[i+N]]=color[i];
for(int i=;i<=N<<;i++)
{
for(int j=head[i];j!=-;j=edge[j].nxt)
{
if(color[i]!=color[edge[j].v])
{
E[color[edge[j].v]].push_back(color[i]);
inder[color[i]]++;
}
}
}
Topsort();
for(int i=;i<=N;i++)
{
if(ans[color[i]]==)
printf("%.2d:%.2d %.2d:%.2d\n",P[i].F/,P[i].F%,P[i].S/,P[i].S%);
else
printf("%.2d:%.2d %.2d:%.2d\n",P[i+N].F/,P[i+N].F%,P[i+N].S/,P[i+N].S%);
}
return ; }
 
 

POJ3683 Priest John's Busiest Day(2-SAT)的更多相关文章

  1. POJ3683 Priest John's Busiest Day 【2-sat】

    题目 John is the only priest in his town. September 1st is the John's busiest day in a year because th ...

  2. poj3683 Priest John's Busiest Day

    2-SAT 输出可行解 找可行解的方案就是: 根据第一次建的图建一个反图..然后求逆拓扑排序,建反图的原因是保持冲突的两个事件肯定会被染成不同的颜色 求逆拓扑排序的原因也是为了对图染的色不会发生冲突, ...

  3. poj3683 Priest John's Busiest Day

    2-SAT. 读入用了黄学长的快速读入,在此膜拜感谢. 把每对时间当作俩个点.如果有交叉代表相互矛盾. 然后tarjan缩点,这样就能得出当前的2-SAT问题是否有解. 如果有解,跑拓扑排序就能找出一 ...

  4. 【POJ3683】Priest John's Busiest Day

    题目 John is the only priest in his town. September 1st is the John's busiest day in a year because th ...

  5. POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题)

    POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题) Descripti ...

  6. 图论(2-sat):Priest John's Busiest Day

    Priest John's Busiest Day   Description John is the only priest in his town. September 1st is the Jo ...

  7. poj 3686 Priest John's Busiest Day

    http://poj.org/problem?id=3683 2-sat 问题判定,输出一组可行解 http://www.cnblogs.com/TheRoadToTheGold/p/8436948. ...

  8. POJ 3683 Priest John's Busiest Day (2-SAT)

    Priest John's Busiest Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6900   Accept ...

  9. POJ 3683 Priest John's Busiest Day(2-SAT+方案输出)

    Priest John's Busiest Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10010   Accep ...

随机推荐

  1. FF中flash滚轮失效的解决方案

    概述 在FF浏览器中有这样一个bug,就是当鼠标hover在flash区域的时候,滚轮会失效.原因是ff浏览器没有把滚轮事件嵌入到flash里面去.如果这个flash很小的话,比如直播的视频,会很容易 ...

  2. 四、activiti工作流-第一个HelloWorld

    上一节已经把流程图画好,并且数据库也已经创建好了25张表,这节讲如何启动一个流程 先新建一个包,并新建一个类. /**然后定义一个成员属性,主要是因为每个方法都要用到这个引擎 * 获取默认流程引擎实例 ...

  3. docker 简单介绍及基础命令运用

    一.什么是docker? Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源. 简单的来讲Docker实际上就是一个大型容器.容器是完全使用沙箱机制,相互之间不 ...

  4. 小程序第三方框架对比 ( wepy / mpvue / taro )

      众所周知如今市面上端的形态多种多样,手机Web.ReactNative.微信小程序, 支付宝小程序, 快应用等,每一端都是巨大的流量入口,当业务要求同时在不同的端都要求有所表现的时候,针对不同的端 ...

  5. MacOS下命令行安装神器brew

    1.安装brew:/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/mast ...

  6. Ubuntu下将python从2.7升级到3.5

    在ubuntu 的终端中用代码下载最新的Python sudo apt-get install python3 系统会提示输入Linux 的密码,输入密码后下载 刚才下载的Python程序被安装在us ...

  7. VueJs(6)---V-on指令

    V-on指令 一.概述 v-on是用来绑定事件监听器,用在普通元素上时,只能监听原生 DOM 事件.用在自定义元素组件上时,也可以监听子组件触发的自定义事件. 在监听原生 DOM 事件时,方法以事件为 ...

  8. [Jenkins]Console Output中文显示问号的问题解决

    ------------------------------------------------------ 如需转载,请注明出处. 文章链接:https://www.cnblogs.com/dzbl ...

  9. Java工程师修炼之路(从小白到BAT的两年学习历程)

    ​ 作者:陆小凤 文章首发于:微信公众号[程序员江湖] 前言 在下本是跨专业渣考研的985渣硕一枚,经历研究生两年的学习积累,有幸于2019秋季招聘中拿到几个公司的研发岗offer,包括百度,阿里,腾 ...

  10. 【原创】驱动加载之StartService

    BOOL WINAPI StartService( _In_ SC_HANDLE hService, _In_ DWORD dwNumServiceArgs, _In_opt_ LPCTSTR *lp ...