题面太鬼畜不粘了。

题意就是给一张n*m的网格图,每个点有点权,有k个关键点,让你把这k个关键点连成一个联通快的最小代价。

题解

这题nmk都非常小,解法肯定是状压,比较一般的解法插头dp,但不太好写。

但其实这道题是裸的斯坦纳树模型。

斯坦纳树是最小生成树的变形,在一般情况下是NP问题,但在k规模较少时可以用状压dp求解。

我们可以设dp[i][j][s]表示以(i,j)为根,覆盖关键点集合为s时的最小代价。

对于这个状态内部的更新,我们可以对s枚举子集,相当于把联通块拆成两部分再合并起来,dp[i][j][s] <= dp[i][j][S]+dp[i][j][s^S]。其中S是子集。

对于这个状态对外的更新,我们可以对和根有连边的点转移,dp[i'][j'][s']=dp[i][j][s]+a[i][j]。其实令s=s‘也可以,反正到了s‘时也得更新。

这种dp方法的好处就是只保留了一个转移点,降掉了我们枚举转移点的复杂度。

代码

#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
#include<queue>
#define mm make_pair
#define N 11
using namespace std;
queue<pair<int,int> >q;
int ans,dp[N][N][<<],n,m,a[N][N],tot;
bool tag[N][N];
const int dx[]={-,,,};
const int dy[]={,-,,};
struct node{
int x,y,s;
}pre[N][N][<<];
inline void spfa(int x,int y,int s){
q.push(mm(x,y));
while(!q.empty()){
int ux=q.front().first,uy=q.front().second;q.pop();
for(int i=;i<;++i){
int vx=ux+dx[i],vy=uy+dy[i];
if(vx>&&vy>&&vx<=n&&vy<=m);else continue;
if(dp[vx][vy][s]>dp[ux][uy][s]+a[vx][vy]){
dp[vx][vy][s]=dp[ux][uy][s]+a[vx][vy];
pre[vx][vy][s]=node{ux,uy,s};
q.push(mm(vx,vy));
}
}
}
}
inline void findans(int x,int y,int s){
tag[x][y]=;
if(!x||!y)return;
int i=pre[x][y][s].x,j=pre[x][y][s].y,S=pre[x][y][s].s;
if(i==x&&j==y)findans(i,j,S),findans(i,j,s^S);
else findans(i,j,S);
}
int main(){
memset(dp,0x3f,sizeof(dp));
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i)
for(int j=;j<=m;++j){
scanf("%d",&a[i][j]);
if(!a[i][j])dp[i][j][<<tot]=,tot++;
else dp[i][j][]=a[i][j];
}
int ma=(<<tot)-;
for(int s=;s<=ma;++s){
for(int i=;i<=n;++i)
for(int j=;j<=m;++j){
for(int S=s;S;S=s&(S-))
if(dp[i][j][s]>dp[i][j][S]+dp[i][j][s^S]-a[i][j]){
dp[i][j][s]=dp[i][j][S]+dp[i][j][s^S]-a[i][j];
pre[i][j][s]=node{i,j,S};
}
spfa(i,j,s);
}
}
int ans=2e9,prx,pry;
for(int i=;i<=n;++i)for(int j=;j<=m;++j)
if(dp[i][j][ma]<ans){
ans=min(ans,dp[i][j][ma]);prx=i,pry=j;
}
findans(prx,pry,ma);
cout<<ans<<endl;
for(int i=;i<=n;++i){
for(int j=;j<=m;++j){
if(!a[i][j])printf("x");
else if(tag[i][j])printf("o");
else printf("_");
}
puts("");
}
return ;
}

[WC2008]游览计划(状压dp)的更多相关文章

  1. luogu4294 [WC2008]游览计划(状压DP/斯坦纳树)

    link 题目大意:给定一个网格图,有些点是关键点,选择格点有代价,求把所有关键点联通的最小代价 斯坦纳树模板题 斯坦纳树问题:给定一个图结构,有一些点是关键点,求把这些关键点联通的最小代价e 斯坦纳 ...

  2. [WC2008]游览计划 状压DP,斯坦纳树

    ---题面--- 题解: 这是一道斯坦纳树的题,用状压+spfa来解决 什么是斯坦纳树? 一开始还以为是数据结构来着,其实跟最小生成树很像,大致就是最小生成树只能在各个点之间直接相连,而斯坦纳树则允许 ...

  3. 【BZOJ 2595】2595: [Wc2008]游览计划 (状压DP+spfa,斯坦纳树?)

    2595: [Wc2008]游览计划 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1572  Solved: 7 ...

  4. BZOJ2595 Wc2008 游览计划 【斯坦纳树】【状压DP】*

    BZOJ2595 Wc2008 游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个 ...

  5. BZOJ 2595: [Wc2008]游览计划 [DP 状压 斯坦纳树 spfa]【学习笔记】

    传送门 题意:略 论文 <SPFA算法的优化及应用> http://www.cnblogs.com/lazycal/p/bzoj-2595.html 本题的核心就是求斯坦纳树: Stein ...

  6. 【BZOJ2595_洛谷4294】[WC2008]游览计划(斯坦纳树_状压DP)

    上个月写的题qwq--突然想写篇博客 题目: 洛谷4294 分析: 斯坦纳树模板题. 简单来说,斯坦纳树问题就是给定一张有边权(或点权)的无向图,要求选若干条边使图中一些选定的点连通(可以经过其他点) ...

  7. [WC2008]游览计划 解题报告

    [WC2008]游览计划 斯坦纳树板子题,其实就是状压dp 令\(dp_{i,s}\)表示任意点\(i\)联通关键点集合\(s\)的最小代价 然后有转移 \[ dp_{i,S}=\min_{T\in ...

  8. bzoj2595 / P4294 [WC2008]游览计划

    P4294 [WC2008]游览计划 斯坦纳树 斯坦纳树,是一种神奇的树.它支持在一个连通图上求包含若干个选定点的最小生成树. 前置算法:spfa+状压dp+dfs(大雾) 我们设$f[o][P]$为 ...

  9. 【bzoj4006】[JLOI2015]管道连接 斯坦纳树+状压dp

    题目描述 给出一张 $n$ 个点 $m$ 条边的无向图和 $p$ 个特殊点,每个特殊点有一个颜色.要求选出若干条边,使得颜色相同的特殊点在同一个连通块内.输出最小边权和. 输入 第一行包含三个整数 n ...

随机推荐

  1. html,css学习实践总结

    网页的布局方式 1.什么是网页的布局方式? 网页的布局方式其实就是指浏览器是如何对网页中的元素进行排版的 1.标准流(文档流/普通流)排版方式 1.1其实浏览器默认的排版方式就是标准流的排版方式 1. ...

  2. PHP PSR代码规范

    转载: https://www.awaimai.com/916.html PSR是PHP通用性框架小组 (PHP Framework Interop Group) 制定的PHP代码编写格式规范,是PH ...

  3. 网络编程--使用UDP发送接收数据

    package com.zhangxueliang.udp; import java.io.IOException; import java.net.DatagramPacket; import ja ...

  4. B站弹幕姬(🐔)分析与开发(上篇)

    辞职之后 休息了一段时间,最近准备开始恢复去工作的状态了,所以搞点事情来练练手.由于沉迷b站女妆大佬想做个收集弹幕的然后根据弹幕自动回复一些弹幕的东西.网上搜了一下有个c#的版本,感觉还做得不错,于是 ...

  5. 关于jenkins旧的构建导致磁盘空间不足问题

    简述: Jenkins在每一次的执行构建后,都会对该构建的项目生成一个历史构建记录以及生成一份历史构建的项目发布包,长期累积可能会占用大量磁盘空间 jenkins构建jobs路径如下图: 解决办法: ...

  6. zabbix自定义模板——监控TCP连接状态

    TCP十二种连接状态说明 可以使用man netstat查看 LISTEN - 侦听来自远方TCP端口的连接请求: SYN-SENT -在发送连接请求后等待匹配的连接请求: SYN-RECEIVED ...

  7. static关键字的用法

    静态变量和静态方法 static关键字的基本用法: 1.修饰变量:被static修饰的变量属于类变量,可以用类名.变量名来引用,而不用直接new一个对象来引用. 2.修饰方法:被static修饰的方法 ...

  8. Spring Boot基础:Spring Boot简介与快速搭建(1)

    1. Spring Boot简介 Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化Spring应用的创建.运行.调试.部署等. Spring Boot默认使用tomca ...

  9. django mysql数据库使用自己的User

    由于我需要的User模型与django自带的User有所不同,所以需要定义自己的User Model,这里记录一下方法,适用于django 1.5+. 因为使用自己的后台,放弃django的管理后台, ...

  10. memcach 命令行

    1. cmd上登录memcache # telnet 127.0.0.1 11211   2. 列出所有items stats items     3. 通过itemid获取key 接下来基于列出的i ...