转载请注明来源,并包含相关链接。

网上有很多讲解KMP算法的博客,我就不浪费时间再写一份了。直接推荐一个当初我入门时看的博客吧: http://www.cnblogs.com/yjiyjige/p/3263858.html 这位同学用详细的图文模式讲解了KMP算法,非常适合入门。 ----------------------------------------------------------------------------------------------

KMP的next数组求法是很不容易搞清楚的一部分,也是最重要的一部分。我这篇文章就以我自己的感悟来慢慢推导一下吧!保证你看完过后是知其然,也知其所以然。

如果你还不知道KMP是什么,请先阅读上面的链接,先搞懂KMP是要干什么。 下面我们就来说说KMP的next数组求法。 KMP的next数组简单来说,假设有两个字符串,一个是待匹配的字符串strText,一个是要查找的关键字strKey。现在我们要在strText中去查找是否包含strKey,用i来表示strText遍历到了哪个字符,用j来表示strKey匹配到了哪个字符。 如果是暴力的查找方法,当strText[i]和strKey[j]匹配失败的时候,i和j都要回退,然后从i-j的下一个字符开始重新匹配。 而KMP就是保证i永远不回退,只回退j来使得匹配效率有所提升。它用的方法就是利用strKey在失配的j为之前的成功匹配的子串的特征来寻找j应该回退的位置。而这个子串的特征就是前后缀的相同程度。 所以next数组其实就是查找strKey中每一位前面的子串的前后缀有多少位匹配,从而决定j失配时应该回退到哪个位置。

我知道上面那段废话很难懂,下面我们看一个彩图:

这个图画的就是strKey这个要查找的关键字字符串。假设我们有一个空的next数组,我们的工作就是要在这个next数组中填值。 下面我们用数学归纳法来解决这个填值的问题。 这里我们借鉴数学归纳法的三个步骤(或者说是动态规划?): 1、初始状态 2、假设第j位以及第j位之前的我们都填完了 3、推论第j+1位该怎么填

初始状态我们稍后再说,我们这里直接假设第j位以及第j位之前的我们都填完了。也就是说,从上图来看,我们有如下已知条件: next[j] == k; next[k] == 绿色色块所在的索引; next[绿色色块所在的索引] == 黄色色块所在的索引; 这里要做一个说明:图上的色块大小是一样的(没骗我?好吧,请忽略色块大小,色块只是代表数组中的一位)。

我们来看下面一个图,可以得到更多的信息:

1.由"next[j] == k;"这个条件,我们可以得到A1子串 == A2子串(根据next数组的定义,前后缀那个)。

2.由"next[k] == 绿色色块所在的索引;"这个条件,我们可以得到B1子串 == B2子串。

3.由"next[绿色色块所在的索引] == 黄色色块所在的索引;"这个条件,我们可以得到C1子串 == C2子串。

4.由1和2(A1 == A2,B1 == B2)可以得到B1 == B2 == B3。

5.由2和3(B1 == B2, C1 == C2)可以得到C1 == C2 == C3。

6.B2 == B3可以得到C3 == C4 == C1 == C2

上面这个就是很简单的几何数学,仔细看看都能看懂的。我这里用相同颜色的线段表示完全相同的子数组,方便观察。

接下来,我们开始用上面得到的条件来推导如果第j+1位失配时,我们应该填写next[j+1]为多少?

next[j+1]即是找strKey从0到j这个子串的最大前后缀:

#:(#:在这里是个标记,后面会用)我们已知A1 == A2,那么A1和A2分别往后增加一个字符后是否还相等呢?我们得分情况讨论:

(1)如果str[k] == str[j],很明显,我们的next[j+1]就直接等于k+1。

  用代码来写就是next[++j] = ++k;

(2)如果str[k] != str[j],那么我们只能从已知的,除了A1,A2之外,最长的B1,B3这个前后缀来做文章了。

那么B1和B3分别往后增加一个字符后是否还相等呢?

由于next[k] == 绿色色块所在的索引,我们先让k = next[k],把k挪到绿色色块的位置,这样我们就可以递归调用"#:"标记处的逻辑了。

由于j+1位之前的next数组我们都是假设已经求出来了的,因此,上面这个递归总会结束,从而得到next[j+1]的值。

我们唯一欠缺的就是初始条件了:

next[0] = -1,  k = -1, j = 0

另外有个特殊情况是k为-1时,不能继续递归了,此时next[j+1]应该等于0,即把j回退到首位。

即 next[j+1] = 0; 也可以写成next[++j] = ++k;

public static int[] getNext(String ps)
{
char[] strKey = ps.toCharArray();
int[] next = new int[strKey.length]; // 初始条件
int j = 0;
int k = -1;
next[0] = -1; // 根据已知的前j位推测第j+1位
while (j < strKey.length - 1)
{
if (k == -1 || strKey[j] == strKey[k])
{
next[++j] = ++k;
}
else
{
k = next[k];
}
} return next;
}

现在再看这段代码应该没有任何问题了吧。

优化:

细心的朋友应该发现了,上面有这样一句话:

(1)如果str[k] == str[j],很明显,我们的next[j+1]就直接等于k+1。用代码来写就是next[++j] = ++k;

可是我们知道,第j+1位是失配了的,如果我们回退j后,发现新的j(也就是此时的++k那位)跟回退之前的j也相等的话,必然也是失配。所以还得继续往前回退。

public static int[] getNext(String ps)
{
char[] strKey = ps.toCharArray();
int[] next = new int[strKey.length]; // 初始条件
int j = 0;
int k = -1;
next[0] = -1; // 根据已知的前j位推测第j+1位
while (j < strKey.length - 1)
{
if (k == -1 || strKey[j] == strKey[k])
{
// 如果str[j + 1] == str[k + 1],回退后仍然失配,所以要继续回退
if (str[j + 1] == str[k + 1])
{
next[++j] = next[++k];
}
else
{
next[++j] = ++k;
}
}
else
{
k = next[k];
}
} return next;
}

好了,自此KMP的next求法全部讲解完毕。欢迎大家指出文章的错误,我好更加完善它。

----------------------------------------------------------------------------------------------------------

下面说说面试的时候,给一个字符串,要你写出它的Next数组,应该怎么写:

①:先对每一位左边的子串求出最大前后缀串的长度,作为初始的Next数组

②:因为第一位失配时需要移动i,因此赋值为-1

③:P[3] == A, Next[3] == 0, P[0] == A;  所以P[3] == P[0], (移动过去后还是失配,需要继续移动),优化Next[3]为Next[0],即-1

④:同理优化Next[10]为Next[0],即-1

⑤:同理优化P[14],P[15],P[16]

http://www.cnblogs.com/tangzhengyue/p/4315393.html

KMP算法的Next数组详解(转)的更多相关文章

  1. KMP算法的Next数组详解

    转载请注明来源,并包含相关链接. 网上有很多讲解KMP算法的博客,我就不浪费时间再写一份了.直接推荐一个当初我入门时看的博客吧:http://www.cnblogs.com/yjiyjige/p/32 ...

  2. KMP算法的Next数组详解 转

    这个写的很好,还有讲kmp,值得一看. http://www.cnblogs.com/tangzhengyue/p/4315393.html 转载请注明来源,并包含相关链接. 网上有很多讲解KMP算法 ...

  3. 字符串模式匹配之KMP算法的next数组详解与C++实现

    相信来看next数组如何求解的童鞋已经对KMP算法是怎么回事有了一定的了解,这里就不再赘述,附上一个链接吧:https://www.cnblogs.com/c-cloud/p/3224788.html ...

  4. KMP算法的优化与详解

    文章开头,我首先抄录一些阮一峰先生关于KMP算法的一些讲解. 下面,我用自己的语言,试图写一篇比较好懂的 KMP 算法解释. 1. 首先,字符串"BBC ABCDAB ABCDABCDABD ...

  5. 【转载】KMP入门级别算法详解--终于解决了(next数组详解)

    [转载]https://blog.csdn.net/LEE18254290736/article/details/77278769 对于正常的字符串模式匹配,主串长度为m,子串为n,时间复杂度会到达O ...

  6. python 排序算法总结及实例详解

    python 排序算法总结及实例详解 这篇文章主要介绍了python排序算法总结及实例详解的相关资料,需要的朋友可以参考下 总结了一下常见集中排序的算法 排序算法总结及实例详解"> 归 ...

  7. 3.awk数组详解及企业实战案例

    awk数组详解及企业实战案例 3.打印数组: [root@nfs-server test]# awk 'BEGIN{array[1]="zhurui";array[2]=" ...

  8. poj 2406:Power Strings(KMP算法,next[]数组的理解)

    Power Strings Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 30069   Accepted: 12553 D ...

  9. JavaScript进阶(十)Array 数组详解

    JS array 数组详解 数组的声明方法 arrayObj = new Array(); 的数组 ,并且第一位是5 数组的运算(传地址) var t2=new Array(); t2[0]=1; t ...

随机推荐

  1. IE Jquery中拒绝訪问的处理方法

    多人合作开发一个站点过程中,为便于开发,将一些公共文件如js,css,images放在外网上,各自链接这类文件以供使用.本地測试时网页的一些JS代码在IE8,IE6中会停止运行,并报某个js文件拒绝訪 ...

  2. 开源JDBC工具类DbUtils

    本篇将会详细地介绍Apache公司的JDBC帮助工具类DbUtils以及如何使用.在上一篇中我们已经通过将以前对dao层使用JDBC操作数据库的冗余代码进行了简易封装形成自己的简单工具类JdbcUti ...

  3. 由两代WIN8 Surface平板看微软心态

    要说win8平板的前景非常好,微软的两代surface做的真不错. 可是可是,微软就错在了把价格定的太高.为什么高,一是intel芯价格不低,二是每套win8和office微软得要价几百美金吧! 这两 ...

  4. js实现class样式的修改、添加及删除的方法

    本文实例讲述了js实现class样式的修改.添加及删除的方法.分享给大家供大家参考.具体分析如下: 比较常见的js前端功能,通过修改标签的className实现相应的功能. 具体代码如下: <t ...

  5. openCV中cvSnakeImage()函数代码分析

    /*M/////////////////////////////////////////////////////////////////////////////////////// // // IMP ...

  6. POJ1273_Drainage Ditches(网络流)

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 54887   Accepted: 2091 ...

  7. CImage类

    CImage封装了DIB(设备无关位图)的功能,因而可以让我们能够处理每个位图像素.这里介绍GDI+和CImage的一般使用方法和技巧. TAG: GDI  CImage  后处理   我们知道,Vi ...

  8. form表单提交不成功提示

    <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="utf-8& ...

  9. MongoDB -- 更新

    $pull: db.collection.update( <query>, { $pull: { <arrayField>: <query2> } } ) $pul ...

  10. 如何在eclipse dump Java内存占用情况和打印GC LOG

     当使用java开发应用程序发生内存泄露的时候,经常会需要dump内存,然后使用内存分析工具,比如Eclipse Memory Analyzer(一般称作MAT)工具. 本文将介绍如何在eclipse ...