基本原理:n+1只鸽子飞回n个鸽笼至少有一个鸽笼含有不少于2只的鸽子。

很简单,应用却也很多,很巧妙,看例题:

Description

Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts, the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.

Your job is to help the children and present a solution.

Input

The input contains several test cases.
The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line containsn space separated integers a1 , ... , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit neighbour i.

The last test case is followed by two zeros.

Output

For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of aisweets). If there is no solution where each child gets at least one sweet print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.

Sample Input

4 5
1 2 3 7 5
3 6
7 11 2 5 13 17
0 0

Sample Output

3 5
2 3 4

Source

题目大意:糖果平分问题。有c个小孩,n个提供糖果的邻居,你可以选择要或不要。现在你只考虑得到的全部糖果能否平分,可能有多种方案,输出一种即可。

上面的case 1: 结果 2 3 4 也行,总和为12. 输出一种即可

#include <stdio.h>
#include <algorithm>
using namespace std; int c,n,neigb[100001];
int S;
struct Remnant
{
int h,r; // 下标和余数
}R[100001]; bool cmp(const Remnant &a, const Remnant & b){ //按余数从小到大排序
if( a.r == b.r)
return a.h < b.h;
return a.r < b.r;
} int main(){
//freopen("in.txt","r",stdin);
while(scanf("%d %d", &c, &n) != EOF){
if(c==0 && n==0) break;
int k=-1,h;
S=0;
for(int i=0; i<n; i++)
{
scanf("%d",&neigb[i]);
S += neigb[i];
R[i].r = S%c; //存储是前i个和 对c的余数
R[i].h = i + 1; //h 为下标
if(k == -1 && R[i].r==0 ) k=i;
} if(k == -1){
sort(R, R+n, cmp);
for(int i=0; i<n-1; i++)
{
if(k == -1 && R[i].r == R[i+1].r)
{
k = R[i].h;
h = R[i+1].h;
break;
}
}
if(k==-1)
printf("no sweets\n");
else{
for(int i=k+1; i<h; i++)
printf("%d ",i);
printf("%d\n",h);
}
}else{
for(int i=0; i<k; i++)
printf("%d ",i+1);
printf("%d\n",k+1);
} }
return 0;
}

鸽巢原理应用-分糖果 POJ 3370 Halloween treats的更多相关文章

  1. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  2. POJ 3370 Halloween treats( 鸽巢原理简单题 )

    链接:传送门 题意:万圣节到了,有 c 个小朋友向 n 个住户要糖果,根据以往的经验,第i个住户会给他们a[ i ]颗糖果,但是为了和谐起见,小朋友们决定要来的糖果要能平分,所以他们只会选择一部分住户 ...

  3. POJ 3370 Halloween treats 鸽巢原理 解题

    Halloween treats 和POJ2356差点儿相同. 事实上这种数列能够有非常多,也能够有不连续的,只是利用鸽巢原理就是方便找到了连续的数列.并且有这种数列也必然能够找到. #include ...

  4. [POJ 3370] Halloween treats

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7143   Accepted: 2641 ...

  5. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Every year there is the same problem at Halloween: Each neighbour is only willing t ...

  6. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6631   Accepted: 2448 ...

  7. poj 3370 Halloween treats(鸽巢原理)

    Description Every year there is the same problem at Halloween: Each neighbour is only willing to giv ...

  8. POJ 2356 && POJ 3370 鸽巢原理

    POJ 2356: 题目大意: 给定n个数,希望在这n个数中找到一些数的和是n的倍数,输出任意一种数的序列,找不到则输出0 这里首先要确定这道题的解是必然存在的 利用一个 sum[i]保存前 i 个数 ...

  9. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

随机推荐

  1. Swift - 类型嵌套(以扑克牌结构体为例)

    类型嵌套,简单来说实在一个类型中包含另外一个类型.我们拿一副扑克来说明. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 //类 ...

  2. javascript (十三) 函数

    JavaScript 函数语法 函数就是包裹在花括号中的代码块,前面使用了关键词 function: function functionname() { 这里是要执行的代码 } 当调用该函数时,会执行 ...

  3. Android菜鸟的成长笔记(12)——Handler、Loop、MessageQueue

    原文:[置顶] Android菜鸟的成长笔记(12)——Handler.Loop.MessageQueue 当一个程序第一次启动时,Android会启动一条主线程(Main Thread),主线程主要 ...

  4. Find命令, find用法,

    Find命令 用法示例:查找HOME目录下大于1M小于10M的文件$ find ~ -size +1M -size -10M 15个小时这一时刻修改的文件:find . -mmin 900 | xar ...

  5. JavaScript—DOM操作

  6. .NET Core 1.0.0 RC2

    .NET Core 1.0.0 RC2 在.NET Core 1.0.0 RC2即将正式发布之际,我也应应景,针对RC2 Preview版本编写一个史上最简单的MVC应用.由于VS 2015目前尚不支 ...

  7. 有时候碰到String赋值就出错,原因有三

    1. String所在的对象,根本就不存在(不是String不存在,而是它所属的类对象不存在) 2. 增加一个String作为类元素后,运行直接就崩溃.一次又一次找原因,结果发现,只需要完全重编译就行 ...

  8. - Shell - sort处理大文件(页 1) - ChinaUnix.net

    - Shell - sort处理大文件(页 1) - ChinaUnix.net sort处理大文件

  9. 数字雨Shopex 4.8.5 SQL Injection Exp

    # -*- coding:utf-8 -* #Author:MXi4oyu #Email:798033502@qq.com #Shopex 4.8.5 SQL Injection Exp #转载请说明 ...

  10. HBase总结(二十)HBase经常使用shell命令具体说明

    进入hbase shell console $HBASE_HOME/bin/hbase shell 假设有kerberos认证,须要事先使用对应的keytab进行一下认证(使用kinit命令),认证成 ...