鸽巢原理应用-分糖果 POJ 3370 Halloween treats
基本原理:n+1只鸽子飞回n个鸽笼至少有一个鸽笼含有不少于2只的鸽子。
很简单,应用却也很多,很巧妙,看例题:
Description
Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts, the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.
Your job is to help the children and present a solution.
Input
The input contains several test cases.
The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line containsn space separated integers a1 , ... , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit neighbour i.
The last test case is followed by two zeros.
Output
For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of aisweets). If there is no solution where each child gets at least one sweet print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.
Sample Input
4 5
1 2 3 7 5
3 6
7 11 2 5 13 17
0 0
Sample Output
3 5
2 3 4
Source
题目大意:糖果平分问题。有c个小孩,n个提供糖果的邻居,你可以选择要或不要。现在你只考虑得到的全部糖果能否平分,可能有多种方案,输出一种即可。
上面的case 1: 结果 2 3 4 也行,总和为12. 输出一种即可
#include <stdio.h>
#include <algorithm>
using namespace std; int c,n,neigb[100001];
int S;
struct Remnant
{
int h,r; // 下标和余数
}R[100001]; bool cmp(const Remnant &a, const Remnant & b){ //按余数从小到大排序
if( a.r == b.r)
return a.h < b.h;
return a.r < b.r;
} int main(){
//freopen("in.txt","r",stdin);
while(scanf("%d %d", &c, &n) != EOF){
if(c==0 && n==0) break;
int k=-1,h;
S=0;
for(int i=0; i<n; i++)
{
scanf("%d",&neigb[i]);
S += neigb[i];
R[i].r = S%c; //存储是前i个和 对c的余数
R[i].h = i + 1; //h 为下标
if(k == -1 && R[i].r==0 ) k=i;
} if(k == -1){
sort(R, R+n, cmp);
for(int i=0; i<n-1; i++)
{
if(k == -1 && R[i].r == R[i+1].r)
{
k = R[i].h;
h = R[i+1].h;
break;
}
}
if(k==-1)
printf("no sweets\n");
else{
for(int i=k+1; i<h; i++)
printf("%d ",i);
printf("%d\n",h);
}
}else{
for(int i=0; i<k; i++)
printf("%d ",i+1);
printf("%d\n",k+1);
} }
return 0;
}
鸽巢原理应用-分糖果 POJ 3370 Halloween treats的更多相关文章
- POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7644 Accepted: 2798 ...
- POJ 3370 Halloween treats( 鸽巢原理简单题 )
链接:传送门 题意:万圣节到了,有 c 个小朋友向 n 个住户要糖果,根据以往的经验,第i个住户会给他们a[ i ]颗糖果,但是为了和谐起见,小朋友们决定要来的糖果要能平分,所以他们只会选择一部分住户 ...
- POJ 3370 Halloween treats 鸽巢原理 解题
Halloween treats 和POJ2356差点儿相同. 事实上这种数列能够有非常多,也能够有不连续的,只是利用鸽巢原理就是方便找到了连续的数列.并且有这种数列也必然能够找到. #include ...
- [POJ 3370] Halloween treats
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7143 Accepted: 2641 ...
- POJ 3370 Halloween treats(抽屉原理)
Halloween treats Every year there is the same problem at Halloween: Each neighbour is only willing t ...
- POJ 3370 Halloween treats(抽屉原理)
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6631 Accepted: 2448 ...
- poj 3370 Halloween treats(鸽巢原理)
Description Every year there is the same problem at Halloween: Each neighbour is only willing to giv ...
- POJ 2356 && POJ 3370 鸽巢原理
POJ 2356: 题目大意: 给定n个数,希望在这n个数中找到一些数的和是n的倍数,输出任意一种数的序列,找不到则输出0 这里首先要确定这道题的解是必然存在的 利用一个 sum[i]保存前 i 个数 ...
- POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7192 Accepted: 3138 ...
随机推荐
- Android事件详解——拖放事件DragEvent
1.Android拖放框架的作用? 利用Android的拖放框架,可以让用户用拖放手势把一个View中的数据移到当前layout内的另一个View中去. 2.拖放框架的内容? 1)拖放事件类 2)拖放 ...
- TsFltMgr.sys其原因是,该系统蓝屏QQ计算机管理器!
同事一WindowsXP系统,正常执行,关闭后,第二天无法启动.详细症状为: (1)安全模式以及带网络功能的安全模式都能够进入. (2)正常模式.还没出现WindowXP滚动栏就開始重新启动: (3) ...
- APPCAN学习笔记003---原生开发与HTML5技术
APPCAN学习笔记003---原生开发与HTML5技术 技术qq交流群:JavaDream:251572072 1.HTML5的优势: HTML5强悍牢固的骨架 CSS3精致到每一个毛孔的皮 ...
- Codeforces Round #257 (Div. 2) B Jzzhu and Sequences
Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...
- Html 内嵌 选择器属性 Dom操作 JavaScript 事件
HTML标签: 一.通用标签(一般标签) 1.格式控制标签 <font color="#6699aa" face="楷体" size="24&q ...
- Delphi中获取Unix时间戳及注意事项(c语言中time()是按格林威治时间计算的,比北京时间多了8小时)
uses DateUtils;DateTimeToUnix(Now) 可以转换到unix时间,但是注意的是,它得到的时间比c语言中time()得到的时间大了8*60*60这是因为Now是当前时区的时间 ...
- 实现 select中指定option选中触发事件
我们在用到下拉列表框select时,需要对选中的<option>选项触发事件,其实<option>本身没有触发事件方法,我们只有在select里的onchange方法里触发. ...
- Android---OpenGL ES之添加动作
本文译自:http://developer.android.com/training/graphics/opengl/motion.html 在屏幕上绘制对象是OpenGL的最基本功能,你可以使用其他 ...
- hdu 5115 Dire Wolf
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5115 题目分类:区间dp 题意:有n只狼,每只狼有两种属性,一种攻击力一种附加值,我们没杀一只狼,那么 ...
- 14.3.3 Locks Set by Different SQL Statements in InnoDB 不同的SQL语句在InnoDB里的锁设置
14.3.3 Locks Set by Different SQL Statements in InnoDB 不同的SQL语句在InnoDB里的锁设置 locking read, 一个UPDATE,或 ...