POJ 2112 Optimal Milking (二分 + floyd + 网络流)
POJ 2112 Optimal Milking
/*
ID: wuqi9395@126.com
PROG:
LANG: C++
*/
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define PI acos(-1.0)
#define mem(a, b) memset(a, b, sizeof(a))
#define rep(i, a, n) for (int i = a; i < n; i++)
#define per(i, a, n) for (int i = n - 1; i >= a; i--)
#define eps 1e-6
#define debug puts("===============")
#define pb push_back
//#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define POSIN(x,y) (0 <= (x) && (x) < n && 0 <= (y) && (y) < m)
typedef long long ll;
typedef unsigned long long ULL;
const int maxn = 250;
const int maxm = 100000;
int k, c, m;
int mp[maxn][maxn];
struct node {
int v; // vertex
int cap; // capacity
int flow; // current flow in this arc
int nxt;
} e[maxm * 2];
int g[maxn], cnt;
int st, ed, n;
void add(int u, int v, int c) {
e[++cnt].v = v;
e[cnt].cap = c;
e[cnt].flow = 0;
e[cnt].nxt = g[u];
g[u] = cnt; e[++cnt].v = u;
e[cnt].cap = 0;
e[cnt].flow = 0;
e[cnt].nxt = g[v];
g[v] = cnt;
} void init(int mid) {
mem(g, 0);
cnt = 1;
st = 0, ed = k + c + 1;
n = k + c;
for (int i = 1; i <= k; i++) add(st, i, m);
for (int i = k + 1; i <= n; i++) {
for (int j = 1; j <= k; j++) if (mp[i][j] <= mid) add(j, i, 1);
add(i, ed, 1);
}
n += 3;
} int dist[maxn], numbs[maxn], q[maxn];
void rev_bfs() {
int font = 0, rear = 1;
for (int i = 0; i <= n; i++) { //n为总点数
dist[i] = maxn;
numbs[i] = 0;
}
q[font] = ed;
dist[ed] = 0;
numbs[0] = 1;
while(font != rear) {
int u = q[font++];
for (int i = g[u]; i; i = e[i].nxt) {
if (e[i ^ 1].cap == 0 || dist[e[i].v] < maxn) continue;
dist[e[i].v] = dist[u] + 1;
++numbs[dist[e[i].v]];
q[rear++] = e[i].v;
}
}
}
int maxflow() {
rev_bfs();
int u, totalflow = 0;
int curg[maxn], revpath[maxn];
for(int i = 0; i <= n; ++i) curg[i] = g[i];
u = st;
while(dist[st] < n) {
if(u == ed) { // find an augmenting path
int augflow = INF;
for(int i = st; i != ed; i = e[curg[i]].v)
augflow = min(augflow, e[curg[i]].cap);
for(int i = st; i != ed; i = e[curg[i]].v) {
e[curg[i]].cap -= augflow;
e[curg[i] ^ 1].cap += augflow;
e[curg[i]].flow += augflow;
e[curg[i] ^ 1].flow -= augflow;
}
totalflow += augflow;
u = st;
}
int i;
for(i = curg[u]; i; i = e[i].nxt)
if(e[i].cap > 0 && dist[u] == dist[e[i].v] + 1) break;
if(i) { // find an admissible arc, then Advance
curg[u] = i;
revpath[e[i].v] = i ^ 1;
u = e[i].v;
} else { // no admissible arc, then relabel this vertex
if(0 == (--numbs[dist[u]])) break; // GAP cut, Important!
curg[u] = g[u];
int mindist = n;
for(int j = g[u]; j; j = e[j].nxt)
if(e[j].cap > 0) mindist = min(mindist, dist[e[j].v]);
dist[u] = mindist + 1;
++numbs[dist[u]];
if(u != st)
u = e[revpath[u]].v; // Backtrack
}
}
return totalflow;
}
void get() {
n = k + c;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
scanf("%d", mp[i] + j);
if (mp[i][j] == 0 && i != j) mp[i][j] = INF;
}
}
}
void floyd(int n, int mp[][maxn]) {
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) if (mp[i][k] != INF) {
for (int j = 1; j <= n; j++) mp[i][j] = min(mp[i][j], mp[i][k] + mp[k][j]);
}
}
}
int main () { while(scanf("%d%d%d", &k, &c, &m) != EOF) {
get();
floyd(n, mp);
int l = 0, r = 10000, mid;
while(l < r) {
mid = (l + r) >> 1;
init(mid);
//debug;
if (maxflow() >= c) r = mid;
else l = mid + 1;
}
printf("%d\n", r);
}
return 0;
}
POJ 2112 Optimal Milking (二分 + floyd + 网络流)的更多相关文章
- POJ 2112 Optimal Milking (二分 + 最大流)
题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...
- POJ 2112 Optimal Milking(Floyd+多重匹配+二分枚举)
题意:有K台挤奶机,C头奶牛,每个挤奶机每天只能为M头奶牛服务,下面给的K+C的矩阵,是形容相互之间的距离,求出来走最远的那头奶牛要走多远 输入数据: 第一行三个数 K, C, M 接下来是 ...
- POJ 2112 Optimal Milking (二分+最短路+最大流)
<题目链接> 题目大意: 有K台挤奶机和C头奶牛,都被视为物体,这K+C个物体之间存在路径.给出一个 (K+C)x(K+C) 的矩阵A,A[i][j]表示物体i和物体j之间的距离,有些物体 ...
- POJ 2112 Optimal Milking (二分+最短路径+网络流)
POJ 2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS Memory Limit: 30000K To ...
- Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)
题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...
- POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】
Optimal Milking Time Limit:2000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ 2112 Optimal Milking (Dinic + Floyd + 二分)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 19456 Accepted: 6947 ...
- POJ 2112 Optimal Milking【网络流+二分+最短路】
求使所有牛都可以被挤牛奶的条件下牛走的最长距离. Floyd求出两两节点之间的最短路,然后二分距离. 构图: 将每一个milking machine与源点连接,边权为最大值m,每个cow与汇点连接,边 ...
- POJ 2112: Optimal Milking【二分,网络流】
题目大意:K台挤奶机,C个奶牛,每台挤奶器可以供M头牛使用,给出奶牛和和机器间的距离矩阵,求所有奶牛走最大距离的最小值 思路:最大距离的最小值,明显提示二分,将最小距离二分之后问题转化成为:K台挤奶机 ...
随机推荐
- 京东商城招聘scala 高级开发工程师 T3级别
岗位级别:T3 岗位职责: 1.参与自动调价.匹配系统的设计和实现 岗位要求: 1. 一年以上scala开发经验2.良好的函数式编程能力3. JAVA基础扎实4.熟悉大数据处理,有hadoop/hba ...
- Linking Containers Together
Linking Containers Together In the Using Docker section we touched on connecting to a service runnin ...
- js获取设备信息
var su = navigator.userAgent.toLowerCase(), mb = ['ipad', 'iphone os', 'midp', 'rv:1.2.3.4', 'ucweb' ...
- Java EE (10) - 资源服务器的整合
加密(Encryption)和数字签名(Digital Signature)通常被用于保护通讯--加密用来防止数据传输过程中的窃听--数字签名用来防止数据传输过程中的篡改 JDBC: 整合关系型数据库 ...
- 【足迹C++primer】52、,转换和继承虚函数
转换和继承,虚函数 Understanding conversions between base and derived classes is essential to understanding h ...
- 飘逸的python - 发送带各种类型附件的邮件
上一篇博文演示了如何发送简单的邮件,这一篇将演示如何发送各种类型的附件. 基本思路就是,使用MIMEMultipart来标示这个邮件是多个部分组成的,然后attach各个部分.如果是附件,则add_h ...
- Shine we together: A innovative dating site using 2012 Nobel Laureate Roth's algorithm
Abstract Our dating site introduced scoring and its related functionalities innovatively, conforming ...
- 优化数据页面(18)——标注keyword
优化数据页面(18)--标注keyword 设计要点:优化数据页面.界面设计.美化exce 秀秀:事实上俺认为,相同是数据项,它们的重要程度也不同. 阿金:嗯? 秀秀:每一行数据时描写叙述一条信息的, ...
- Cocos2d-x 3.2 大富翁游戏项目开发-第七部分 获取角色路径_1
以下是一些设计略显繁琐,有必要清除思维. 下一个主要的成就,当我们点击Gobutton后,得到一个随机数骰子,是走了几步,它是基于以下步骤行走路径的数目,然后移动位置的基于角色的路径. 流程如图普遍认 ...
- WITH AS
表 id pid name获取 下面所有的子节点