Boyer-Moore算法不仅效率高,而且构思巧妙,容易理解。1977年,德克萨斯大学的Robert S. Boyer教授和J Strother Moore教授发明了这种算法。

下面,我根据Moore教授自己的例子来解释这种算法。

1.

假定字符串为"HERE IS A SIMPLE EXAMPLE",搜索词为"EXAMPLE"。

2.

首先,"字符串"与"搜索词"头部对齐,从尾部开始比较。

这是一个很聪明的想法,因为如果尾部字符不匹配,那么只要一次比较,就可以知道前7个字符(整体上)肯定不是要找的结果。

我们看到,"S"与"E"不匹配。这时,"S"就被称为"坏字符"(bad character),即不匹配的字符。我们还发现,"S"不包含在搜索词"EXAMPLE"之中,这意味着可以把搜索词直接移到"S"的后一位。

3.

依然从尾部开始比较,发现"P"与"E"不匹配,所以"P"是"坏字符"。但是,"P"包含在搜索词"EXAMPLE"之中。所以,将搜索词后移两位,两个"P"对齐。

4.

我们由此总结出"坏字符规则"

  后移位数 = 坏字符的位置 - 搜索词中的上一次出现位置

如果"坏字符"不包含在搜索词之中,则上一次出现位置为 -1。

以"P"为例,它作为"坏字符",出现在搜索词的第6位(从0开始编号),在搜索词中的上一次出现位置为4,所以后移 6 - 4 = 2位。再以前面第二步的"S"为例,它出现在第6位,上一次出现位置是 -1(即未出现),则整个搜索词后移 6 - (-1) = 7位。

5.

依然从尾部开始比较,"E"与"E"匹配。

6.

比较前面一位,"LE"与"LE"匹配。

7.

比较前面一位,"PLE"与"PLE"匹配。

8.

比较前面一位,"MPLE"与"MPLE"匹配。我们把这种情况称为"好后缀"(good suffix),即所有尾部匹配的字符串。注意,"MPLE"、"PLE"、"LE"、"E"都是好后缀。

9.

比较前一位,发现"I"与"A"不匹配。所以,"I"是"坏字符"。

10.

根据"坏字符规则",此时搜索词应该后移 2 - (-1)= 3 位。问题是,此时有没有更好的移法?

11.

我们知道,此时存在"好后缀"。所以,可以采用"好后缀规则"

  后移位数 = 好后缀的位置 - 搜索词中的上一次出现位置

举例来说,如果字符串"ABCDAB"的后一个"AB"是"好后缀"。那么它的位置是5(从0开始计算,取最后的"B"的值),在"搜索词中的上一次出现位置"是1(第一个"B"的位置),所以后移 5 - 1 = 4位,前一个"AB"移到后一个"AB"的位置。

再举一个例子,如果字符串"ABCDEF"的"EF"是好后缀,则"EF"的位置是5 ,上一次出现的位置是 -1(即未出现),所以后移 5 - (-1) = 6位,即整个字符串移到"F"的后一位。

这个规则有三个注意点:

  (1)"好后缀"的位置以最后一个字符为准。假定"ABCDEF"的"EF"是好后缀,则它的位置以"F"为准,即5(从0开始计算)。

  (2)如果"好后缀"在搜索词中只出现一次,则它的上一次出现位置为 -1。比如,"EF"在"ABCDEF"之中只出现一次,则它的上一次出现位置为-1(即未出现)。

  (3)如果"好后缀"有多个,则除了最长的那个"好后缀",其他"好后缀"的上一次出现位置必须在头部。比如,假定"BABCDAB"的"好后 缀"是"DAB"、"AB"、"B",请问这时"好后缀"的上一次出现位置是什么?回答是,此时采用的好后缀是"B",它的上一次出现位置是头部,即第0 位。这个规则也可以这样表达:如果最长的那个"好后缀"只出现一次,则可以把搜索词改写成如下形式进行位置计算"(DA)BABCDAB",即虚拟加入最 前面的"DA"。

回到上文的这个例子。此时,所有的"好后缀"(MPLE、PLE、LE、E)之中,只有"E"在"EXAMPLE"还出现在头部,所以后移 6 - 0 = 6位。

12.

可以看到,"坏字符规则"只能移3位,"好后缀规则"可以移6位。所以,Boyer-Moore算法的基本思想是,每次后移这两个规则之中的较大值。

更巧妙的是,这两个规则的移动位数,只与搜索词有关,与原字符串无关。因此,可以预先计算生成《坏字符规则表》和《好后缀规则表》。使用时,只要查表比较一下就可以了。

13.

继续从尾部开始比较,"P"与"E"不匹配,因此"P"是"坏字符"。根据"坏字符规则",后移 6 - 4 = 2位。

14.

从尾部开始逐位比较,发现全部匹配,于是搜索结束。如果还要继续查找(即找出全部匹配),则根据"好后缀规则",后移 6 - 0 = 6位,即头部的"E"移到尾部的"E"的位置。

本文来源于阮一峰老师的博客

字符串匹配之boyer-Moore算法的更多相关文章

  1. [小专题]另一种字符串匹配的思路——Shift-And算法

    吐槽:前两天打组队赛遇到一个字符串的题考了这个(见:http://acm.hdu.edu.cn/showproblem.php?pid=5972 ) 当时写了个KMP瞎搞然后TLE了(害),赛后去查了 ...

  2. 模式字符串匹配问题(KMP算法)

    这两天又看了一遍<算法导论>上面的字符串匹配那一节,下面是实现的几个程序,可能有错误,仅供参考和交流. 关于详细的讲解,网上有很多,大多数算法及数据结构书中都应该有涉及,由于时间限制,在这 ...

  3. Boyer Moore算法(字符串匹配)

    上一篇文章,我介绍了KMP算法. 但是,它并不是效率最高的算法,实际采用并不多.各种文本编辑器的"查找"功能(Ctrl+F),大多采用Boyer-Moore算法. Boyer-Mo ...

  4. 字符串匹配的Boyer-Moore(BM)算法

    各种文本编辑器的"查找"功能(Ctrl+F),大多采用Boyer-Moore算法. Boyer-Moore算法不仅效率高,而且构思巧妙,容易理解.1977年,德克萨斯大学的Robe ...

  5. 神奇的字符串匹配:扩展KMP算法

    引言 一个算是冷门的算法(在竞赛上),不过其算法思想值得深究. 前置知识 kmp的算法思想,具体可以参考 → Click here trie树(字典树). 正文 问题定义:给定两个字符串 S 和 T( ...

  6. 字符串匹配常见算法(BF,RK,KMP,BM,Sunday)

    今日了解了一下字符串匹配的各种方法. 并对sundaysearch算法实现并且单元. 字符串匹配算法,是在实际工程中经常遇到的问题,也是各大公司笔试面试的常考题目.此算法通常输入为原字符串(strin ...

  7. 字符串匹配的 Boyer-Moore 算法

    上一篇文章,我介绍了 字符串匹配的KMP算法 但是,它并不是效率最高的算法,实际采用并不多.各种文本编辑器的” 查找” 功能(Ctrl+F),大多采用 Boyer-Moore 算法. 下面,我根据 M ...

  8. 字符串匹配的KMP算法

    ~~~摘录 来源:阮一峰~~~ 字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串”BBC ABCDAB ABCDABCDABDE”,我想知道,里面是否包含另一个字符串”ABCDABD”? 许 ...

  9. sdut 2125串结构练习--字符串匹配【两种KMP算法】

    串结构练习——字符串匹配 Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目链接:http://acm.sdut.edu.cn/sduto ...

  10. 字符串匹配--Karp-Rabin算法

    主要特征 1.使用hash函数 2.预处理阶段时间复杂度O(m),常量空间 3.查找阶段时间复杂度O(mn) 4.期望运行时间:O(n+m) 本文地址:http://www.cnblogs.com/a ...

随机推荐

  1. Java之JSP基础语法

    1.JSP页面元素简介及page指令     2.JSP注释,3种不同注释 <!--  我是HTML注释,在客户端可见 --> <%--我是JSP注释,在客户端不可见 --%> ...

  2. java学习开题

  3. C#变量修饰符

    访问修饰符 关键字包括:internal,public,protected和private,用于设置变量的访问级别.  public  变量可以做为它所属的类型的一个字段,可以在任何地方访问它.  i ...

  4. 如何获取本机IP

    GetLocalHost 直接通过InetAddress.getLocalHost()来获取,其主要逻辑如下 InetAddress.getLocalHost(): String hostname = ...

  5. notepad++正则表达式替换字符串详解

    正则表达式是一个查询的字符串,它包含一般的字符和一些特殊的字符,特殊字符可以扩展查找字符串的能力,正则表达式在查找和替换字符串的作用不可忽视,它 能很好提高工作效率. EditPlus的查找,替换,文 ...

  6. Ajax的基本请求/响应模型

    一.Ajax工作核心 Ajax的核心是JavaScript对象XMLHttpRequest(简称XHR).它是一种支持异步请求的技术.可以通过使用XHR对象向服务器提出请求并处理响应,而不阻塞用户. ...

  7. Xcode-之Alcatraz

    一.说明: Alcatraz 是一款 Xcode的插件管理工具,可以用来管理XCode的 插件.模版以及颜色配置的工具. 二.安装 1.github地址:https://github.com/alca ...

  8. Javaweb 第12天 JSP、EL技术

    第12天 JSP.EL技术 今日任务: JSP技术入门和常用指令 JSP的内置对象&标签介绍 EL表达式&EL的内置对象 课堂笔记 1.JSP技术入门和常用指令 1.1.JSP的由来. ...

  9. ACdream 1728 SJY's First Task

    简单题. 先建树,我用邻接表来存了.然后对于每个叶子结点DFS一下,DFS深度超过了K就return,找到了叶子节点就记录下来,最后排个序,然后输出答案. 由于结点编号比较奇葩,所以用两个map来转换 ...

  10. L2-007. 家庭房产

    L2-007. 家庭房产 题目链接:https://www.patest.cn/contests/gplt/L2-007 并查集 初学,看这题的时候完全没有什么好的想法,参考了@yinzm的blog用 ...