假如我们只有3台linux虚拟机,主机名分别为hadoop01、hadoop02和hadoop03,在这3台机器上,hadoop集群的部署情况如下:

hadoop01:1个namenode,1个datanode,1个journalnode,1个zkfc,1个resourcemanager,1个nodemanager;

hadoop02:1个namenode,1个datanode,1个journalnode,1个zkfc,1个resourcemanager,1个nodemanager;

hadoop03:1个datenode,1个journalnode,1个nodemanager;

下面我们来介绍启动hdfs和yarn的一些命令。

1.启动hdfs集群(使用hadoop的批量启动脚本)

/root/apps/hadoop/sbin/start-dfs.sh
[root@hadoop01 ~]# /root/apps/hadoop/sbin/start-dfs.sh
Starting namenodes on [hadoop01 hadoop02]
hadoop01: starting namenode, logging to /root/apps/hadoop/logs/hadoop-root-namenode-hadoop01.out
hadoop02: starting namenode, logging to /root/apps/hadoop/logs/hadoop-root-namenode-hadoop02.out
hadoop03: starting datanode, logging to /root/apps/hadoop/logs/hadoop-root-datanode-hadoop03.out
hadoop02: starting datanode, logging to /root/apps/hadoop/logs/hadoop-root-datanode-hadoop02.out
hadoop01: starting datanode, logging to /root/apps/hadoop/logs/hadoop-root-datanode-hadoop01.out
Starting journal nodes [hadoop01 hadoop02 hadoop03]
hadoop03: starting journalnode, logging to /root/apps/hadoop/logs/hadoop-root-journalnode-hadoop03.out
hadoop02: starting journalnode, logging to /root/apps/hadoop/logs/hadoop-root-journalnode-hadoop02.out
hadoop01: starting journalnode, logging to /root/apps/hadoop/logs/hadoop-root-journalnode-hadoop01.out
Starting ZK Failover Controllers on NN hosts [hadoop01 hadoop02]
hadoop01: starting zkfc, logging to /root/apps/hadoop/logs/hadoop-root-zkfc-hadoop01.out
hadoop02: starting zkfc, logging to /root/apps/hadoop/logs/hadoop-root-zkfc-hadoop02.out
[root@hadoop01 ~]#

从上面的启动日志可以看出,start-dfs.sh这个启动脚本是通过ssh对多个节点的namenode、datanode、journalnode以及zkfc进程进行批量启动的。

2.停止hdfs集群(使用hadoop的批量启动脚本)

/root/apps/hadoop/sbin/stop-dfs.sh 
[root@hadoop01 ~]# /root/apps/hadoop/sbin/stop-dfs.sh
Stopping namenodes on [hadoop01 hadoop02]
hadoop02: stopping namenode
hadoop01: stopping namenode
hadoop02: stopping datanode
hadoop03: stopping datanode
hadoop01: stopping datanode
Stopping journal nodes [hadoop01 hadoop02 hadoop03]
hadoop03: stopping journalnode
hadoop02: stopping journalnode
hadoop01: stopping journalnode
Stopping ZK Failover Controllers on NN hosts [hadoop01 hadoop02]
hadoop01: stopping zkfc
hadoop02: stopping zkfc
[root@hadoop01 ~]#

3.启动单个进程

[root@hadoop01 ~]# /root/apps/hadoop/sbin/hadoop-daemon.sh start namenode
starting namenode, logging to /root/apps/hadoop/logs/hadoop-root-namenode-hadoop01.out
[root@hadoop02 ~]# /root/apps/hadoop/sbin/hadoop-daemon.sh start namenode
starting namenode, logging to /root/apps/hadoop/logs/hadoop-root-namenode-hadoop02.out
[root@hadoop01 ~]# /root/apps/hadoop/sbin/hadoop-daemon.sh start datanode
starting datanode, logging to /root/apps/hadoop/logs/hadoop-root-datanode-hadoop01.out
[root@hadoop02 ~]# /root/apps/hadoop/sbin/hadoop-daemon.sh start datanode
starting datanode, logging to /root/apps/hadoop/logs/hadoop-root-datanode-hadoop02.out
[root@hadoop03 apps]# /root/apps/hadoop/sbin/hadoop-daemon.sh start datanode
starting datanode, logging to /root/apps/hadoop/logs/hadoop-root-datanode-hadoop03.out
[root@hadoop01 ~]# /root/apps/hadoop/sbin/hadoop-daemon.sh start journalnode
starting journalnode, logging to /root/apps/hadoop/logs/hadoop-root-journalnode-hadoop01.out
[root@hadoop02 ~]# /root/apps/hadoop/sbin/hadoop-daemon.sh start journalnode
starting journalnode, logging to /root/apps/hadoop/logs/hadoop-root-journalnode-hadoop02.out
[root@hadoop03 apps]# /root/apps/hadoop/sbin/hadoop-daemon.sh start journalnode
starting journalnode, logging to /root/apps/hadoop/logs/hadoop-root-journalnode-hadoop03.out
[root@hadoop01 ~]# /root/apps/hadoop/sbin/hadoop-daemon.sh start zkfc
starting zkfc, logging to /root/apps/hadoop/logs/hadoop-root-zkfc-hadoop01.out
[root@hadoop02 ~]# /root/apps/hadoop/sbin/hadoop-daemon.sh start zkfc
starting zkfc, logging to /root/apps/hadoop/logs/hadoop-root-zkfc-hadoop02.out

分别查看启动后3台虚拟机上的进程情况:

[root@hadoop01 ~]# jps
6695 DataNode
2002 QuorumPeerMain
6879 DFSZKFailoverController
7035 Jps
6800 JournalNode
6580 NameNode
[root@hadoop01 ~]#
[root@hadoop02 ~]# jps
6360 JournalNode
6436 DFSZKFailoverController
2130 QuorumPeerMain
6541 Jps
6255 DataNode
6155 NameNode
[root@hadoop02 ~]#
[root@hadoop03 apps]# jps
5331 Jps
5103 DataNode
5204 JournalNode
2258 QuorumPeerMain
[root@hadoop03 apps]#

3.停止单个进程

[root@hadoop01 ~]# jps
6695 DataNode
2002 QuorumPeerMain
8486 Jps
6879 DFSZKFailoverController
6800 JournalNode
6580 NameNode
[root@hadoop01 ~]#
[root@hadoop01 ~]#
[root@hadoop01 ~]#
[root@hadoop01 ~]#
[root@hadoop01 ~]# /root/apps/hadoop/sbin/hadoop-daemon.sh stop zkfc
stopping zkfc
[root@hadoop01 ~]# /root/apps/hadoop/sbin/hadoop-daemon.sh stop journalnode
stopping journalnode
[root@hadoop01 ~]# /root/apps/hadoop/sbin/hadoop-daemon.sh stop datanode
stopping datanode
[root@hadoop01 ~]# /root/apps/hadoop/sbin/hadoop-daemon.sh stop namenode
stopping namenode
[root@hadoop01 ~]# jps
2002 QuorumPeerMain
8572 Jps
[root@hadoop01 ~]#
[root@hadoop02 ~]# jps
6360 JournalNode
6436 DFSZKFailoverController
2130 QuorumPeerMain
7378 Jps
6255 DataNode
6155 NameNode
[root@hadoop02 ~]# /root/apps/hadoop/sbin/hadoop-daemon.sh stop zkfc
stopping zkfc
[root@hadoop02 ~]# /root/apps/hadoop/sbin/hadoop-daemon.sh stop journalnode
stopping journalnode
[root@hadoop02 ~]# /root/apps/hadoop/sbin/hadoop-daemon.sh stop datanode
stopping datanode
[root@hadoop02 ~]# /root/apps/hadoop/sbin/hadoop-daemon.sh stop namenode
stopping namenode
[root@hadoop02 ~]# jps
7455 Jps
2130 QuorumPeerMain
[root@hadoop02 ~]#
[root@hadoop03 apps]# jps
5103 DataNode
5204 JournalNode
5774 Jps
2258 QuorumPeerMain
[root@hadoop03 apps]# /root/apps/hadoop/sbin/hadoop-daemon.sh stop journalnode
stopping journalnode
[root@hadoop03 apps]# /root/apps/hadoop/sbin/hadoop-daemon.sh stop datanode
stopping datanode
[root@hadoop03 apps]# jps
5818 Jps
2258 QuorumPeerMain
[root@hadoop03 apps]#

3.启动yarn集群(使用hadoop的批量启动脚本)

/root/apps/hadoop/sbin/start-yarn.sh 
[root@hadoop01 ~]# /root/apps/hadoop/sbin/start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /root/apps/hadoop/logs/yarn-root-resourcemanager-hadoop01.out
hadoop03: starting nodemanager, logging to /root/apps/hadoop/logs/yarn-root-nodemanager-hadoop03.out
hadoop02: starting nodemanager, logging to /root/apps/hadoop/logs/yarn-root-nodemanager-hadoop02.out
hadoop01: starting nodemanager, logging to /root/apps/hadoop/logs/yarn-root-nodemanager-hadoop01.out
[root@hadoop01 ~]#

从上面的启动日志可以看出,start-yarn.sh启动脚本只在本地启动一个ResourceManager进程,而3台机器上的nodemanager都是通过ssh的方式启动的。所以hadoop02机器上的ResourceManager需要我们手动去启动。

4.启动hadoop02上的ResourceManager进程

/root/apps/hadoop/sbin/yarn-daemon.sh start resourcemanager

5.停止yarn

/root/apps/hadoop/sbin/stop-yarn.sh
[root@hadoop01 ~]# /root/apps/hadoop/sbin/stop-yarn.sh
stopping yarn daemons
stopping resourcemanager
hadoop01: stopping nodemanager
hadoop03: stopping nodemanager
hadoop02: stopping nodemanager
no proxyserver to stop
[root@hadoop01 ~]#

通过上面的停止日志可以看出,stop-yarn.sh脚本只停止了本地的那个ResourceManager进程,所以hadoop02上的那个resourcemanager我们需要单独去停止。

6.停止hadoop02上的resourcemanager

/root/apps/hadoop/sbin/yarn-daemon.sh stop resourcemanager

注意:启动和停止单个hdfs相关的进程使用的是"hadoop-daemon.sh"脚本,而启动和停止yarn使用的是"yarn-daemon.sh"脚本。

如果觉得本文对您有帮助,不妨扫描下方微信二维码打赏点,您的鼓励是我前进最大的动力:

hadoop集群之HDFS和YARN启动和停止命令的更多相关文章

  1. Hadoop集群(二) HDFS搭建

    HDFS只是Hadoop最基本的一个服务,很多其他服务,都是基于HDFS展开的.所以部署一个HDFS集群,是很核心的一个动作,也是大数据平台的开始. 安装Hadoop集群,首先需要有Zookeeper ...

  2. hadoop 集群搭建 配置 spark yarn 对效率的提升永无止境

    [手动验证:任意2个节点间是否实现 双向 ssh免密登录] 弄懂通信原理和集群的容错性 任意2个节点间实现双向 ssh免密登录,默认在~目录下 [实现上步后,在其中任一节点安装\配置hadoop后,可 ...

  3. hadoop 集群搭建 配置 spark yarn 对效率的提升永无止境 Hadoop Volume 配置

    [手动验证:任意2个节点间是否实现 双向 ssh免密登录] 弄懂通信原理和集群的容错性 任意2个节点间实现双向 ssh免密登录,默认在~目录下 [实现上步后,在其中任一节点安装\配置hadoop后,可 ...

  4. 一键配置高可用Hadoop集群(hdfs HA+zookeeper HA)

    准备环境 3台节点,主节点 建议 2G 内存,两个从节点 1.5G内存, 桥接网络 关闭防火墙 配置ssh,让节点之间能够相互 ping 通 准备  软件放到 autoInstall  目录下,已存放 ...

  5. Hadoop集群(第13期)_HBase 常用Shell命令

    进入hbase shell console$HBASE_HOME/bin/hbase shell如果有kerberos认证,需要事先使用相应的keytab进行一下认证(使用kinit命令),认证成功之 ...

  6. 大数据系列(3)——Hadoop集群完全分布式坏境搭建

    前言 上一篇我们讲解了Hadoop单节点的安装,并且已经通过VMware安装了一台CentOS 6.8的Linux系统,咱们本篇的目标就是要配置一个真正的完全分布式的Hadoop集群,闲言少叙,进入本 ...

  7. hadoop集群环境搭建之安装配置hadoop集群

    在安装hadoop集群之前,需要先进行zookeeper的安装,请参照hadoop集群环境搭建之zookeeper集群的安装部署 1 将hadoop安装包解压到 /itcast/  (如果没有这个目录 ...

  8. Hadoop集群完全分布式坏境搭建

    前言 上一篇我们讲解了Hadoop单节点的安装,并且已经通过VMware安装了一台CentOS 6.8的Linux系统,咱们本篇的目标就是要配置一个真正的完全分布式的Hadoop集群,闲言少叙,进入本 ...

  9. hadoop(二)hadoop集群的搭建

    一.集群环境准备工作 1.修改主机名 在root 账户下 vi /etc/sysconfig/network   或者 sudo vi /etc/sysconfig/network 2.设置系统默认启 ...

随机推荐

  1. Eclipse快捷键集结

    Debug快捷键 F5单步调试进入函数内部.   F6单步调试不进入函数内部,如果装了金山词霸2006则要把“取词开关”的快捷键改成其他的.   F7由函数内部返回到调用处.   F8一直执行到下一个 ...

  2. rnqoj-30- [stupid]愚蠢的矿工-树形DP

    把树转化为二叉树,然后再左右DP: #include<stdio.h> #include<string.h> #include<iostream> #include ...

  3. mysql join 的同时可以筛选数据

    看sql ) ) group by a.id; 这里面用了多个子查询,与join关联. 其中 不仅有关联条件,还对sh_mall_goods表进行了筛选,只选出mall_id为9的数据,进行关联. 这 ...

  4. CPU使用率统计办法

    我们在搞性能测试的时候,对后台服务器的CPU利用率监控是一个常用的手段.服务器的CPU利用率高,则表明服务器很繁忙.如果前台响应时间越来越大,而后台CPU利用率始终上不去,说明在某个地方有瓶颈了,系统 ...

  5. tool - 支持TestLink 1.93,将excel格式用例转化成可以导入的xml格式

     tool - 支持TestLink 1.93,将excel格式用例转化成可以导入的xml格式  https://github.com/zhangzheyuk/CaseConvert

  6. JAVA模拟表单提交

    这是我网上搜的,自己使用也蛮方便,所以上传供大家分享. package wzh.Http;   import java.io.BufferedReader; import java.io.IOExce ...

  7. App上线流程全攻略(续)-iOS8之后的改动与所遇日常错误

    随着iOS8的公布,iTunes Connect的界面也是发生了非常大的改变,App 上传到 Store上面的步骤也是发生了些改变.以下继续用图说话: /*********************** ...

  8. Button和ImageButton

    Button----button ImageButton----图片button 共同拥有特征: 都能够作为一个button产生点击事件 不同点 1. Button有text的属性.ImageButt ...

  9. JavaScript函数 bind call apply区别

    1. apply calll 在JavaScript中 call 和 apply 都是为了改变某个函数运行时上下文而存在的, 换句话说就是为了改变函数内部的this的指向. 这里我们有一个新的对象 b ...

  10. mysql连接提示1030

    今天上午,开发使用工具连上mysql,连接一个库,就提示 mysql 错误 ERROR 1030 Got error 28 from. 查询资料,说可能是磁盘空间不足.果然连上去一看/分区空间只有数十 ...