There two methods to construct a heap from a unordered set of array.

If a array has size n, it can be seen as a complete binary tree, in which the element indexed by i has its left children 2*i+1(if 2*i+1<n) and its right children 2*i+2(if 2*i+2<n), noting that the index of the array is from 0 to n-1.
First let us introduce two subprocessed:
sift_down and
sift-up

sift-down

sift-down is a recursive procedure. Aussming that we start from node i, compare i with the smaller(denoted by j) between it's left children i+1 and it's right children i+2. If value of i is bigger than value of j(in min heap), we change the value of i and j, and then do the same procidure to j. Do like this until j is a leaf node. Note that the subtree rooted by left children of i and the subtree rooted by the right children of i are both minheap(satisfy the property of min heap). The code for sift-down can be written as follows:
void siftdown(int a[],int i, int n) //n is the size of array a
{
while(2*i+1<n)
{
int j=2*i+1;
if(j+1<n&&a[j+1]<a[j])
j++;
if(a[j]<a[i])
swap(a,i,j); //exchange value of i and j
i=j;
}
}

sift-up

sift-up is also a recursive procidure. Assuming that we start from node i, compare i with its parent p((i-1)/2). If value of i is smaller than value of p, exchange value of i and p, and then do the same thing to p until p is the root of this tree. Note that all the nodes before node i make up a minheap.  The code for sift-up can be written like follows:
void siftup(int a[],int i, int n) //n is the size of array a
{
while(i>0)
{
int p=(i-1)>>1;
if(a[i]<a[p])
swap(a,i,p);
i=p;
}
}

1、process using sift-down

The last element who has a children is indexed by (n-1)/2. Starting from i=(n-1)/2, Do sift-down to i until the root. After this, a minheap is constructed. The pseudo code for this procedure can be written like follows:
void heap_create_1(int a[],int n)
{
if(n<=1)
return;
int i=(n-1)/2;
while(i>0)
siftdown(a,i,n);
}

The time cost using only sift-down to create a heap is O(n).(Actrually, the compare times during creating a minheap from a unordered array, whose size is n, is not greater than 4*n.)

Note that in this method, when siftdown node i, all the subtree under i is minheap.

2、process using sift-up

This method go through from node indexed by 0 to node indexed by n-1. When processing node i, the nodes before i make up a minheap. So processing node i can be seen as inserting a new node to a minheap. For each i, we sift up from i to root. The pseudo code for this method can be written like follows:
void heap_create_2(int a[],int n)
{
int i;
for(i=1;i<n;i++)
siftup(a,i,n);
}

The time cost using sift-up to create a heap is O(nlogn).


heap creation的更多相关文章

  1. Native Application 开发详解(直接在程序中调用 ntdll.dll 中的 Native API,有内存小、速度快、安全、API丰富等8大优点)

    文章目录:                   1. 引子: 2. Native Application Demo 展示: 3. Native Application 简介: 4. Native Ap ...

  2. Hulu面试题解答——N位数去除K个数字(解法错误sorry)

    给定一个N位数,比如12345,从里面去掉k个数字.得到一个N-k位的数.比如去掉2,4,得到135,去掉1,5.得到234.设计算法.求出全部得到的N-k位数里面最小的那一个. 写的代码例如以下,思 ...

  3. [20190415]11g下那些latch是共享的.txt

    [20190415]11g下那些latch是共享的.txt http://andreynikolaev.wordpress.com/2010/11/23/shared-latches-by-oracl ...

  4. Linux Process/Thread Creation、Linux Process Principle、sys_fork、sys_execve、glibc fork/execve api sourcecode

    相关学习资料 linux内核设计与实现+原书第3版.pdf(.3章) 深入linux内核架构(中文版).pdf 深入理解linux内核中文第三版.pdf <独辟蹊径品内核Linux内核源代码导读 ...

  5. Heap Only Tuples (HOT)

    Introduction ------------ The Heap Only Tuple (HOT) feature eliminates redundant index entries and a ...

  6. [No0000147]深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing)理解堆与栈4/4

    前言   虽然在.Net Framework 中我们不必考虑内在管理和垃圾回收(GC),但是为了优化应用程序性能我们始终需要了解内存管理和垃圾回收(GC).另外,了解内存管理可以帮助我们理解在每一个程 ...

  7. mysql性能问题小解 Converting HEAP to MyIsam create_myisa

    安定北京被性能测试困扰了N天,实在没想法去解决了,今天又收到上级的命令说安定北京要解决,无奈!把项目组唯一的DBA辞掉了,现在所以数据库的问题都得自己来处理:( 不知道上边人怎么想的.而且更不知道怎安 ...

  8. java head space/ java.lang.OutOfMemoryError: Java heap space内存溢出

    上一篇JMX/JConsole调试本地还可以在centos6.5 服务器上进行监控有个问题端口只开放22那么设置的9998端口 你怎么都连不上怎么监控?(如果大神知道还望指点,个人见解) 线上项目出现 ...

  9. Java 堆内存与栈内存异同(Java Heap Memory vs Stack Memory Difference)

    --reference Java Heap Memory vs Stack Memory Difference 在数据结构中,堆和栈可以说是两种最基础的数据结构,而Java中的栈内存空间和堆内存空间有 ...

随机推荐

  1. JS常见操作

    //第一篇博文,希望大家多多支持 /***** BasePage.js 公共的 脚本文件 部分方法需引用jquery库 *****/ //#region 日期操作 //字符串转化为时间. functi ...

  2. SQL Server 查看数据库空间分配情况的 2 种方法

    方法 1. sys.dm_db_file_space_usage. 方法 2. sys.dm_db_session_space_usage. ----------------------------- ...

  3. Nginx 配置指令的执行顺序(十一)

    紧跟在 post-access 阶段之后的是 try-files 阶段.这个阶段专门用于实现标准配置指令 try_files 的功能,并不支持 Nginx 模块注册处理程序.由于 try_files  ...

  4. 何謂COB (Chip On Board) ?介紹COB的演進歷史

    COB (Chip On Board)在電子製造業已經是一項成熟的技術了,可是一般的組裝工廠對它的製程並不熟悉,也許是因為它使用到一些 wire bond 的積體電路(IC)封裝技術,所以很多的成品或 ...

  5. 在类似qq或者微信聊天中。如何根据不同的手机发送图片

    原文:在类似qq或者微信聊天中.如何根据不同的手机发送图片   前一段时间,公司自己要求做多客服开发,但是对于发送图片这一块,当时很苦恼,我用自己的手机(米2)测试,不管是本地,还是云相册,最新照片. ...

  6. (转载博文)MFC 窗口句柄获取

    句柄获取方法(获取该窗口的句柄后,即可向该窗口类类发送消息.处理程序):0.获取所在类窗口的句柄: this->m_hwnd 1.主窗口的句柄: 无论在主窗口类内,还是子窗口类内,获取主窗口句柄 ...

  7. PDF转word文档

    本文未对扫描版的PDF实验,但是可编辑PDF版本可以转换为word而且转换后的word是可编辑的. 1.从http://xiazai.zol.com.cn/detail/33/326858.shtml ...

  8. 杭电oj 2037 今年暑假不AC

    Tips:贪心算法的典型应用,可以按照节目结束时间由小到大排序,(至于结束时间相同的,有些人说按开始时间早的排序,不过个人认为不必处理,因为结束时间一样,两个之中要么都没有,要么必有一个)然后再依次进 ...

  9. uva 10635 - Prince and Princess(LCS)

    题目连接:10635 - Prince and Princess 题目大意:给出n, m, k,求两个长度分别为m + 1 和 k + 1且由1~n * n组成的序列的最长公共子序列长的. 解题思路: ...

  10. UIScrollView 与 UIPageView 的联合使用

       @interface ViewController : UIViewController<UIScrollViewDelegate> { UIScrollView * scrollV ...