There two methods to construct a heap from a unordered set of array.

If a array has size n, it can be seen as a complete binary tree, in which the element indexed by i has its left children 2*i+1(if 2*i+1<n) and its right children 2*i+2(if 2*i+2<n), noting that the index of the array is from 0 to n-1.
First let us introduce two subprocessed:
sift_down and
sift-up

sift-down

sift-down is a recursive procedure. Aussming that we start from node i, compare i with the smaller(denoted by j) between it's left children i+1 and it's right children i+2. If value of i is bigger than value of j(in min heap), we change the value of i and j, and then do the same procidure to j. Do like this until j is a leaf node. Note that the subtree rooted by left children of i and the subtree rooted by the right children of i are both minheap(satisfy the property of min heap). The code for sift-down can be written as follows:
void siftdown(int a[],int i, int n) //n is the size of array a
{
while(2*i+1<n)
{
int j=2*i+1;
if(j+1<n&&a[j+1]<a[j])
j++;
if(a[j]<a[i])
swap(a,i,j); //exchange value of i and j
i=j;
}
}

sift-up

sift-up is also a recursive procidure. Assuming that we start from node i, compare i with its parent p((i-1)/2). If value of i is smaller than value of p, exchange value of i and p, and then do the same thing to p until p is the root of this tree. Note that all the nodes before node i make up a minheap.  The code for sift-up can be written like follows:
void siftup(int a[],int i, int n) //n is the size of array a
{
while(i>0)
{
int p=(i-1)>>1;
if(a[i]<a[p])
swap(a,i,p);
i=p;
}
}

1、process using sift-down

The last element who has a children is indexed by (n-1)/2. Starting from i=(n-1)/2, Do sift-down to i until the root. After this, a minheap is constructed. The pseudo code for this procedure can be written like follows:
void heap_create_1(int a[],int n)
{
if(n<=1)
return;
int i=(n-1)/2;
while(i>0)
siftdown(a,i,n);
}

The time cost using only sift-down to create a heap is O(n).(Actrually, the compare times during creating a minheap from a unordered array, whose size is n, is not greater than 4*n.)

Note that in this method, when siftdown node i, all the subtree under i is minheap.

2、process using sift-up

This method go through from node indexed by 0 to node indexed by n-1. When processing node i, the nodes before i make up a minheap. So processing node i can be seen as inserting a new node to a minheap. For each i, we sift up from i to root. The pseudo code for this method can be written like follows:
void heap_create_2(int a[],int n)
{
int i;
for(i=1;i<n;i++)
siftup(a,i,n);
}

The time cost using sift-up to create a heap is O(nlogn).


heap creation的更多相关文章

  1. Native Application 开发详解(直接在程序中调用 ntdll.dll 中的 Native API,有内存小、速度快、安全、API丰富等8大优点)

    文章目录:                   1. 引子: 2. Native Application Demo 展示: 3. Native Application 简介: 4. Native Ap ...

  2. Hulu面试题解答——N位数去除K个数字(解法错误sorry)

    给定一个N位数,比如12345,从里面去掉k个数字.得到一个N-k位的数.比如去掉2,4,得到135,去掉1,5.得到234.设计算法.求出全部得到的N-k位数里面最小的那一个. 写的代码例如以下,思 ...

  3. [20190415]11g下那些latch是共享的.txt

    [20190415]11g下那些latch是共享的.txt http://andreynikolaev.wordpress.com/2010/11/23/shared-latches-by-oracl ...

  4. Linux Process/Thread Creation、Linux Process Principle、sys_fork、sys_execve、glibc fork/execve api sourcecode

    相关学习资料 linux内核设计与实现+原书第3版.pdf(.3章) 深入linux内核架构(中文版).pdf 深入理解linux内核中文第三版.pdf <独辟蹊径品内核Linux内核源代码导读 ...

  5. Heap Only Tuples (HOT)

    Introduction ------------ The Heap Only Tuple (HOT) feature eliminates redundant index entries and a ...

  6. [No0000147]深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing)理解堆与栈4/4

    前言   虽然在.Net Framework 中我们不必考虑内在管理和垃圾回收(GC),但是为了优化应用程序性能我们始终需要了解内存管理和垃圾回收(GC).另外,了解内存管理可以帮助我们理解在每一个程 ...

  7. mysql性能问题小解 Converting HEAP to MyIsam create_myisa

    安定北京被性能测试困扰了N天,实在没想法去解决了,今天又收到上级的命令说安定北京要解决,无奈!把项目组唯一的DBA辞掉了,现在所以数据库的问题都得自己来处理:( 不知道上边人怎么想的.而且更不知道怎安 ...

  8. java head space/ java.lang.OutOfMemoryError: Java heap space内存溢出

    上一篇JMX/JConsole调试本地还可以在centos6.5 服务器上进行监控有个问题端口只开放22那么设置的9998端口 你怎么都连不上怎么监控?(如果大神知道还望指点,个人见解) 线上项目出现 ...

  9. Java 堆内存与栈内存异同(Java Heap Memory vs Stack Memory Difference)

    --reference Java Heap Memory vs Stack Memory Difference 在数据结构中,堆和栈可以说是两种最基础的数据结构,而Java中的栈内存空间和堆内存空间有 ...

随机推荐

  1. Nginx安装配置PHP(FastCGI)环境的教程

    这篇是Nginx安装配置PHP(FastCGI)环境的教程.Nginx不支持对外部程序的直接调用或者解析,所有的外部程序(包括PHP)必须通过FastCGI接口来调用. 一.什么是 FastCGI F ...

  2. Windows消息拦截技术的应用(作者博客里有许多相关文章)

    民航合肥空管中心 周毅 一.前 言 众所周知,Windows程式的运行是依靠发生的事件来驱动.换句话说,程式不断等待一个消息的发生,然后对这个消息的类型进行判断,再做适当的处理.处理完此次消息后又回到 ...

  3. Android实现ListView或GridView首行/尾行距离屏幕边缘距离

    直接上关键属性: 设置ListView或GridView的android:clipToPadding = true, 然后通过paddingTop和paddingBottom设置距离就好了.

  4. eclipse启动tomcat 访问http://localhost:8080 报404错误

    eclipse启动tomcat 访问http://localhost:8080 报404错误 Server Locations修改后会变灰,如果需要更改设置,则需要移除与Tomcat服务器关联的项目, ...

  5. 深入理解事件(event)与委托(delegate)

    好久没学.NET了,最近重又开始学习,发现委托有很多变化了,发现事件不明白了(可能以前就没明白过) 网上搜索了几篇文章,也没注意什么时候的,发现都讲的不彻底,综合一下,也当个学习笔记. using S ...

  6. 何谓Dandy?它是一种着装风格

    何谓Dandy?它是一种着装风格_女性_腾讯网 何谓Dandy?它是一种着装风格 2012年02月17日09:47腾讯专稿我要评论(0) 字号:T|T   何谓Dandyism?它是一种风格,词根Da ...

  7. Python学习笔记10-Python MysqlHelper ,MySql 辅助类

    自己写了一个MySql辅助类,有需要的拿走: #--encoding:utf-8-- # import MySQLdb class MySQLHelper: myVersion=0.1 def __i ...

  8. C# 3.0 { get; set; } 默认值

    .NET Framework 3.5 使用的是 C# 3.0,C# 3.0 有一些新的语言特性,其中有一项就是快捷属性. 之前的写法: private int _id = 0;public int I ...

  9. android _scrollview嵌套listview出现高度显示不全解决方案

    只要在工具类里写上这一段代码:/** * scrollview嵌套listview显示不全解决 * @param listView */ public static void setListViewH ...

  10. XML是什么,它能够做什么?——写给XML入门者

    XML就可以扩展标记语言(eXtensible Markup Language).标记是指计算机所能理解的信息符号,通过此种标记,计算机之间能够处理包括各种信息的文章等.怎样定义这些标记,既能够选择国 ...