There two methods to construct a heap from a unordered set of array.

If a array has size n, it can be seen as a complete binary tree, in which the element indexed by i has its left children 2*i+1(if 2*i+1<n) and its right children 2*i+2(if 2*i+2<n), noting that the index of the array is from 0 to n-1.
First let us introduce two subprocessed:
sift_down and
sift-up

sift-down

sift-down is a recursive procedure. Aussming that we start from node i, compare i with the smaller(denoted by j) between it's left children i+1 and it's right children i+2. If value of i is bigger than value of j(in min heap), we change the value of i and j, and then do the same procidure to j. Do like this until j is a leaf node. Note that the subtree rooted by left children of i and the subtree rooted by the right children of i are both minheap(satisfy the property of min heap). The code for sift-down can be written as follows:
void siftdown(int a[],int i, int n) //n is the size of array a
{
while(2*i+1<n)
{
int j=2*i+1;
if(j+1<n&&a[j+1]<a[j])
j++;
if(a[j]<a[i])
swap(a,i,j); //exchange value of i and j
i=j;
}
}

sift-up

sift-up is also a recursive procidure. Assuming that we start from node i, compare i with its parent p((i-1)/2). If value of i is smaller than value of p, exchange value of i and p, and then do the same thing to p until p is the root of this tree. Note that all the nodes before node i make up a minheap.  The code for sift-up can be written like follows:
void siftup(int a[],int i, int n) //n is the size of array a
{
while(i>0)
{
int p=(i-1)>>1;
if(a[i]<a[p])
swap(a,i,p);
i=p;
}
}

1、process using sift-down

The last element who has a children is indexed by (n-1)/2. Starting from i=(n-1)/2, Do sift-down to i until the root. After this, a minheap is constructed. The pseudo code for this procedure can be written like follows:
void heap_create_1(int a[],int n)
{
if(n<=1)
return;
int i=(n-1)/2;
while(i>0)
siftdown(a,i,n);
}

The time cost using only sift-down to create a heap is O(n).(Actrually, the compare times during creating a minheap from a unordered array, whose size is n, is not greater than 4*n.)

Note that in this method, when siftdown node i, all the subtree under i is minheap.

2、process using sift-up

This method go through from node indexed by 0 to node indexed by n-1. When processing node i, the nodes before i make up a minheap. So processing node i can be seen as inserting a new node to a minheap. For each i, we sift up from i to root. The pseudo code for this method can be written like follows:
void heap_create_2(int a[],int n)
{
int i;
for(i=1;i<n;i++)
siftup(a,i,n);
}

The time cost using sift-up to create a heap is O(nlogn).


heap creation的更多相关文章

  1. Native Application 开发详解(直接在程序中调用 ntdll.dll 中的 Native API,有内存小、速度快、安全、API丰富等8大优点)

    文章目录:                   1. 引子: 2. Native Application Demo 展示: 3. Native Application 简介: 4. Native Ap ...

  2. Hulu面试题解答——N位数去除K个数字(解法错误sorry)

    给定一个N位数,比如12345,从里面去掉k个数字.得到一个N-k位的数.比如去掉2,4,得到135,去掉1,5.得到234.设计算法.求出全部得到的N-k位数里面最小的那一个. 写的代码例如以下,思 ...

  3. [20190415]11g下那些latch是共享的.txt

    [20190415]11g下那些latch是共享的.txt http://andreynikolaev.wordpress.com/2010/11/23/shared-latches-by-oracl ...

  4. Linux Process/Thread Creation、Linux Process Principle、sys_fork、sys_execve、glibc fork/execve api sourcecode

    相关学习资料 linux内核设计与实现+原书第3版.pdf(.3章) 深入linux内核架构(中文版).pdf 深入理解linux内核中文第三版.pdf <独辟蹊径品内核Linux内核源代码导读 ...

  5. Heap Only Tuples (HOT)

    Introduction ------------ The Heap Only Tuple (HOT) feature eliminates redundant index entries and a ...

  6. [No0000147]深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing)理解堆与栈4/4

    前言   虽然在.Net Framework 中我们不必考虑内在管理和垃圾回收(GC),但是为了优化应用程序性能我们始终需要了解内存管理和垃圾回收(GC).另外,了解内存管理可以帮助我们理解在每一个程 ...

  7. mysql性能问题小解 Converting HEAP to MyIsam create_myisa

    安定北京被性能测试困扰了N天,实在没想法去解决了,今天又收到上级的命令说安定北京要解决,无奈!把项目组唯一的DBA辞掉了,现在所以数据库的问题都得自己来处理:( 不知道上边人怎么想的.而且更不知道怎安 ...

  8. java head space/ java.lang.OutOfMemoryError: Java heap space内存溢出

    上一篇JMX/JConsole调试本地还可以在centos6.5 服务器上进行监控有个问题端口只开放22那么设置的9998端口 你怎么都连不上怎么监控?(如果大神知道还望指点,个人见解) 线上项目出现 ...

  9. Java 堆内存与栈内存异同(Java Heap Memory vs Stack Memory Difference)

    --reference Java Heap Memory vs Stack Memory Difference 在数据结构中,堆和栈可以说是两种最基础的数据结构,而Java中的栈内存空间和堆内存空间有 ...

随机推荐

  1. MYSQL 的 3 类数据类型

    1.数据型: bool,float,double decimal(M,D) M是小数位数(精度)的总数,D是小数点(标度)后面的位数.DECIMAL整数最大位数(M)为65. smallint 小的整 ...

  2. Qt 鼠标样式特效探索样例(一)——利用时间器调用QWidget.move()函数

    Qt 鼠标样式特效探索样例(一)       心血来潮,突然想在Qt里玩一把鼠标样式,想到在浏览网页时,经常看到漂亮的鼠标动画,于是今天摸索着乱写个粗糙的demo,来满足自己的好奇心. 效果图 方案要 ...

  3. 【FSFA 读书笔记】Ch 2 Computer Foundatinons(1)

    Data Organization 1. 进制转换. 按照正常的书写顺序写一个数字(无论多少进制),其中最左边的列称为“最高有效符号”,最右边的列称为“最低有效符号”. (The right-most ...

  4. FTP的主动模式和被动模式

    摘自http://blog.csdn.net/love_gaohz/article/details/50723164 http://my.oschina.net/binny/blog/17469 FT ...

  5. CSDN博文大赛火爆开启

    俗话说的好,程序猿会写博,谁也挡不住! 是不是每一个开发人员都能写出好博文,这个非常难说,但能够肯定的是,能写出好博文的,一定是优秀的程序猿! 写作即思考,养成写博文的习惯,既能帮自己整理技术思路,也 ...

  6. 【并查集+拓扑排序】【HDU1811】【Rank of Tetris】

    题意:给你3种关系 A=B,A>B,A<B 问是否排名方式唯一,或者存在矛盾 解 1.读入数据先处理 =号 用并查集的祖先作为代表元素,其他儿子节点都等于跟这个点重叠. 再读入 '< ...

  7. ASPNET程序中常用的三十三种代码

    1. 打开新的窗口并传送参数 response.write("<script>window.open(’*.aspx?id="+this.DropDownList1.S ...

  8. JS中slice,splice,split的区别

    不知道大家对slice,splice,splite是肿么样的感觉,反正我刚接触到这三个函数的时候整个人都懵了,因为一个个长的跟孪生兄弟似的,每次用的时候都会混,于是决定记下来,也给大家当个参考吧. s ...

  9. 导入已有的vmdk文件,发现网络无法连通

    把以前的节点都删除了,重新载入镜像.发现每一个都ping不同,ifconfig发现eth0端口都没有打开.. 解决: 进入: vim /etc/sysconfig/network-scripts/if ...

  10. Android开发环境的搭建之(三)虚拟设备AVD的创建

    选择AVD Manager选项,启动创建AVD向导.根据开发要求创建制定配置的虚拟设备. 设置屏幕大小为17寸,480X800 设置系统映像为API17,X86. 设置AVD Name为MyPhone ...