BZOJ3737 : [Pa2013]Euler
首先枚举$n$的每个约数$d$,检查一下$d+1$是否是质数,这些数都有可能作为答案的质因子出现。
考虑爆搜,每次枚举下一个要在答案中出现的质因子$p$,将$n$除以$p-1$,再枚举$p$的指数,然后递归搜索。
需要加一些剪枝:
$1.$当$n=1$的时候说明找到了一组合法解,直接返回。
$2.$只有当$p-1|n$时才有可能有解,因此设$g[i][j]$表示第$i$个约数在第$j$个质数之后第一个能被整除的位置。
那么可以沿着$g$进行枚举,每次枚举到的必然是$n$的约数。
$3.$对于如何判断一个$d$是$n$的第几个约数,可以用两个数组进行重标号:
$small[d]$表示$d(d\leq\sqrt{n})$是$n$的第几个约数。
$big[d]$表示$\frac{n}{d}(\frac{n}{d}>\sqrt{n})$是$n$的第几个约数。
#include<cstdio>
#include<algorithm>
typedef long long ll;
const int N=1000000,M=5000;
int T,lim,m,d,cnt,i,j,p[N/10],tot,small[N],big[N],g[M][700];bool v[N];ll n,a[M],b[M],q[N];
inline bool check(ll n){
if(n<N)return !v[n];
for(int i=2;1LL*i*i<=n;i++)if(n%i==0)return 0;
return 1;
}
void dfs(int x,ll S,ll p){
if(p==1){q[cnt++]=S;return;}
x=g[p<=lim?small[p]:big[n/p]][x];
if(x==m)return;
dfs(x+1,S,p);
for(dfs(x+1,S*=a[x],p/=a[x]-1);p%a[x]==0;dfs(x+1,S*=a[x],p/=a[x]));
}
int main(){
for(i=2;i<N;i++){
if(!v[i])p[tot++]=i;
for(j=0;j<tot&&i*p[j]<N;j++){
v[i*p[j]]=1;
if(i%p[j]==0)break;
}
}
scanf("%d",&T);
while(T--){
scanf("%lld",&n);
if(n==1){puts("2\n1 2");continue;}
for(lim=1;1LL*(lim+1)*(lim+1)<=n;lim++);
for(cnt=m=d=0,i=1;i<=lim;i++)if(n%i==0){
if(check(i+1))a[m++]=i+1;
b[d++]=i;
if(1LL*i*i!=n){
if(check(n/i+1))a[m++]=n/i+1;
b[d++]=n/i;
}
}
std::sort(a,a+m),std::sort(b,b+d);
for(i=0;i<d;i++){
if(b[i]<=lim)small[b[i]]=i;else big[n/b[i]]=i;
for(g[i][m]=m,j=m-1;~j;j--)g[i][j]=b[i]%(a[j]-1)?g[i][j+1]:j;
}
dfs(0,1,n);
std::sort(q,q+cnt);
printf("%d\n",cnt);
if(cnt)for(printf("%lld",q[0]),i=1;i<cnt;i++)printf(" %lld",q[i]);
puts("");
}
return 0;
}
BZOJ3737 : [Pa2013]Euler的更多相关文章
- 【BZOJ】3737: [Pa2013]Euler
题意: 求满足\(phi(a)=n\)的\(a\)的个数.(\(n \le 10^{10}\)) 分析 这种题一开始就感觉是搜索= = 题解 首先容易得到 \[\phi(n) = \prod_{i} ...
- [BZOJ]3737 [Pa2013]Euler
从这个FB开始写博客啦. 也不知道会坚持多久…… = =似乎要加一句转载请注明出处 http://www.cnblogs.com/DancingOnTheTree/p/4026076.html htt ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- [project euler] program 4
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...
- The Euler function[HDU2824]
The Euler functionTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- Euler Tour Tree与dynamic connectivity
Euler Tour Tree最大的优点就是可以方便的维护子树信息,这点LCT是做不到的.为什么要维护子树信息呢..?我们可以用来做fully dynamic connectivity(online) ...
- nyoj998(euler)
题意:题意:给出n和m,求满足条件gcd(x, n)>=m的x的gcd(x, n)的和,其中1<=x<=n,1<= n, m <= 1e9:思路:此题和nyoj1007差 ...
- nyoj1007(euler 函数)
euler(x)公式能计算小于等于x的并且和x互质的数的个数: 我们再看一下如何求小于等于n的和n互质的数的和, 我们用sum(n)表示: 若gcd(x, a)=1,则有gcd(x, x-a)=1: ...
- [家里蹲大学数学杂志]第237期Euler公式的美
1 Euler 公式 $e^{i\pi}+1=0$ (1) 它把 a. $e:$ 自然对数的底 $\approx 2. 718281828459$ (数分) b. $i$: 虚数单位 $=\sqr ...
随机推荐
- MyBatis - 7.MyBatis逆向 Generator
MyBatis Generator: 简称MBG,是一个专门为MyBatis框架使用者定制的代码生成器,可以快速的根据表生成对应的映射文件,接口,以及bean类.支持基本的增删改查,以及QBC风格的条 ...
- webpack学习笔记--整体配置结构
之前的章节分别讲述了每个配置项的具体含义,但没有描述它们所处的位置和数据结构,下面通过一份代码来描述清楚: const path = require('path'); module.exports = ...
- L1与L2正则(转)
概念: L0范数表示向量中非零元素的个数:NP问题,但可以用L1近似代替. L1范数表示向量中每个元素绝对值的和: L1范数的解通常是稀疏性的,倾向于选择:1. 数目较少的一些非常大的值 2. 数目 ...
- ANGULAR6.x - 错误随笔 - Can't bind to 'formGroup'
formGroup:错误 Can't bind to 'formGroup' since it isn't a known property of 'form'. (" 原因: 在使用for ...
- Dapper Helper
using System; using System.Collections.Generic; using System.Configuration; using System.Data; using ...
- dedecms首页入口的详细注释
今天闲来无事,就拿来dede首页的文件给大家详细解释一遍,以便于新手学习,注释过程非常非常非常的详细,里面解释到dede表前缀#@__代替的原理.解释到dede很多自定义函数的具体位置和具体作用等等疑 ...
- 【Android】Android apk默认安装位置设置
在Android工程中,设置apk的默认安装位置 在AndroidManifest.xml文件Manifest标签中添加android:installLocation属性 android:instal ...
- 没有IDE的日子
没有QT Creator,没有VS2008,没有Eclipse,也没有KDevelop,忘掉一切IDE. 好吧,现在我只有Vim了,可我跟Vim不熟. Vim魅力四射,光芒万丈,高高在上,她就是传说中 ...
- silverlight5 OOB 直接p/invoke实现串口通信
public class SerialWrapper : IDisposable { #region Enum public enum StopBits ...
- 通过awk获取netstat命令中的进程号
需要如下: 获取进程号