[Spark][Python]spark 从 avro 文件获取 Dataframe 的例子
[Spark][Python]spark 从 avro 文件获取 Dataframe 的例子
从如下地址获取文件:
https://github.com/databricks/spark-avro/raw/master/src/test/resources/episodes.avro
导入到 hdfs 系统:
hdfs dfs -put episodes.avro
读入:
mydata001=sqlContext.read.format("com.databricks.spark.avro").load("episodes.avro")
交互式运行结果:
In [7]: mydata001=sqlContext.read.format("com.databricks.spark.avro").load("episodes.avro")
17/10/03 07:00:47 INFO avro.AvroRelation: Listing hdfs://localhost:8020/user/training/episodes.avro on driver
In [8]: type(mydata001)
Out[8]: pyspark.sql.dataframe.DataFrame
In [9]: mydata001.count()
17/10/03 07:01:05 INFO storage.MemoryStore: Block broadcast_3 stored as values in memory (estimated size 65.5 KB, free 65.5 KB)
17/10/03 07:01:05 INFO storage.MemoryStore: Block broadcast_3_piece0 stored as bytes in memory (estimated size 21.4 KB, free 86.9 KB)
17/10/03 07:01:05 INFO storage.BlockManagerInfo: Added broadcast_3_piece0 in memory on localhost:40075 (size: 21.4 KB, free: 208.8 MB)
17/10/03 07:01:05 INFO spark.SparkContext: Created broadcast 3 from count at NativeMethodAccessorImpl.java:-2
17/10/03 07:01:05 INFO storage.MemoryStore: Block broadcast_4 stored as values in memory (estimated size 230.4 KB, free 317.3 KB)
17/10/03 07:01:06 INFO storage.MemoryStore: Block broadcast_4_piece0 stored as bytes in memory (estimated size 21.5 KB, free 338.8 KB)
17/10/03 07:01:06 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on localhost:40075 (size: 21.5 KB, free: 208.8 MB)
17/10/03 07:01:06 INFO spark.SparkContext: Created broadcast 4 from hadoopFile at AvroRelation.scala:121
17/10/03 07:01:06 INFO mapred.FileInputFormat: Total input paths to process : 1
17/10/03 07:01:07 INFO spark.SparkContext: Starting job: count at NativeMethodAccessorImpl.java:-2
17/10/03 07:01:07 INFO scheduler.DAGScheduler: Registering RDD 16 (count at NativeMethodAccessorImpl.java:-2)
17/10/03 07:01:07 INFO scheduler.DAGScheduler: Got job 1 (count at NativeMethodAccessorImpl.java:-2) with 1 output partitions
17/10/03 07:01:07 INFO scheduler.DAGScheduler: Final stage: ResultStage 3 (count at NativeMethodAccessorImpl.java:-2)
17/10/03 07:01:07 INFO scheduler.DAGScheduler: Parents of final stage: List(ShuffleMapStage 2)
17/10/03 07:01:07 INFO scheduler.DAGScheduler: Missing parents: List(ShuffleMapStage 2)
17/10/03 07:01:07 INFO scheduler.DAGScheduler: Submitting ShuffleMapStage 2 (MapPartitionsRDD[16] at count at NativeMethodAccessorImpl.java:-2), which has no missing parents
17/10/03 07:01:07 INFO storage.MemoryStore: Block broadcast_5 stored as values in memory (estimated size 11.5 KB, free 350.3 KB)
17/10/03 07:01:07 INFO storage.MemoryStore: Block broadcast_5_piece0 stored as bytes in memory (estimated size 5.7 KB, free 356.0 KB)
17/10/03 07:01:07 INFO storage.BlockManagerInfo: Added broadcast_5_piece0 in memory on localhost:40075 (size: 5.7 KB, free: 208.8 MB)
17/10/03 07:01:07 INFO spark.SparkContext: Created broadcast 5 from broadcast at DAGScheduler.scala:1006
17/10/03 07:01:07 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ShuffleMapStage 2 (MapPartitionsRDD[16] at count at NativeMethodAccessorImpl.java:-2)
17/10/03 07:01:07 INFO scheduler.TaskSchedulerImpl: Adding task set 2.0 with 1 tasks
17/10/03 07:01:07 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 2.0 (TID 2, localhost, partition 0,PROCESS_LOCAL, 2249 bytes)
17/10/03 07:01:07 INFO executor.Executor: Running task 0.0 in stage 2.0 (TID 2)
17/10/03 07:01:07 INFO rdd.HadoopRDD: Input split: hdfs://localhost:8020/user/training/episodes.avro:0+597
17/10/03 07:01:08 INFO executor.Executor: Finished task 0.0 in stage 2.0 (TID 2). 2484 bytes result sent to driver
17/10/03 07:01:08 INFO scheduler.DAGScheduler: ShuffleMapStage 2 (count at NativeMethodAccessorImpl.java:-2) finished in 0.691 s
17/10/03 07:01:08 INFO scheduler.DAGScheduler: looking for newly runnable stages
17/10/03 07:01:08 INFO scheduler.DAGScheduler: running: Set()
17/10/03 07:01:08 INFO scheduler.DAGScheduler: waiting: Set(ResultStage 3)
17/10/03 07:01:08 INFO scheduler.DAGScheduler: failed: Set()
17/10/03 07:01:08 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 2.0 (TID 2) in 693 ms on localhost (1/1)
17/10/03 07:01:08 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 2.0, whose tasks have all completed, from pool
17/10/03 07:01:08 INFO scheduler.DAGScheduler: Submitting ResultStage 3 (MapPartitionsRDD[19] at count at NativeMethodAccessorImpl.java:-2), which has no missing parents
17/10/03 07:01:08 INFO storage.MemoryStore: Block broadcast_6 stored as values in memory (estimated size 12.6 KB, free 368.5 KB)
17/10/03 07:01:08 INFO storage.MemoryStore: Block broadcast_6_piece0 stored as bytes in memory (estimated size 6.1 KB, free 374.7 KB)
17/10/03 07:01:08 INFO storage.BlockManagerInfo: Added broadcast_6_piece0 in memory on localhost:40075 (size: 6.1 KB, free: 208.8 MB)
17/10/03 07:01:08 INFO spark.SparkContext: Created broadcast 6 from broadcast at DAGScheduler.scala:1006
17/10/03 07:01:08 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 3 (MapPartitionsRDD[19] at count at NativeMethodAccessorImpl.java:-2)
17/10/03 07:01:08 INFO scheduler.TaskSchedulerImpl: Adding task set 3.0 with 1 tasks
17/10/03 07:01:08 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 3.0 (TID 3, localhost, partition 0,NODE_LOCAL, 1999 bytes)
17/10/03 07:01:08 INFO executor.Executor: Running task 0.0 in stage 3.0 (TID 3)
17/10/03 07:01:08 INFO storage.ShuffleBlockFetcherIterator: Getting 1 non-empty blocks out of 1 blocks
17/10/03 07:01:08 INFO storage.ShuffleBlockFetcherIterator: Started 0 remote fetches in 0 ms
17/10/03 07:01:08 INFO executor.Executor: Finished task 0.0 in stage 3.0 (TID 3). 1666 bytes result sent to driver
17/10/03 07:01:08 INFO scheduler.DAGScheduler: ResultStage 3 (count at NativeMethodAccessorImpl.java:-2) finished in 0.344 s
17/10/03 07:01:08 INFO scheduler.DAGScheduler: Job 1 finished: count at NativeMethodAccessorImpl.java:-2, took 1.480495 s
17/10/03 07:01:08 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 3.0 (TID 3) in 345 ms on localhost (1/1)
17/10/03 07:01:08 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 3.0, whose tasks have all completed, from pool
Out[9]: 8
In [10]: mydata001.take(1)
17/10/03 07:01:18 INFO storage.MemoryStore: Block broadcast_7 stored as values in memory (estimated size 230.1 KB, free 604.8 KB)
17/10/03 07:01:18 INFO storage.MemoryStore: Block broadcast_7_piece0 stored as bytes in memory (estimated size 21.4 KB, free 626.2 KB)
17/10/03 07:01:18 INFO storage.BlockManagerInfo: Added broadcast_7_piece0 in memory on localhost:40075 (size: 21.4 KB, free: 208.7 MB)
17/10/03 07:01:18 INFO spark.SparkContext: Created broadcast 7 from take at <ipython-input-10-35862abbc114>:1
17/10/03 07:01:18 INFO storage.MemoryStore: Block broadcast_8 stored as values in memory (estimated size 230.5 KB, free 856.7 KB)
17/10/03 07:01:18 INFO storage.MemoryStore: Block broadcast_8_piece0 stored as bytes in memory (estimated size 21.5 KB, free 878.2 KB)
17/10/03 07:01:18 INFO storage.BlockManagerInfo: Added broadcast_8_piece0 in memory on localhost:40075 (size: 21.5 KB, free: 208.7 MB)
17/10/03 07:01:18 INFO spark.SparkContext: Created broadcast 8 from take at <ipython-input-10-35862abbc114>:1
17/10/03 07:01:18 INFO mapred.FileInputFormat: Total input paths to process : 1
17/10/03 07:01:18 INFO spark.SparkContext: Starting job: take at <ipython-input-10-35862abbc114>:1
17/10/03 07:01:18 INFO scheduler.DAGScheduler: Got job 2 (take at <ipython-input-10-35862abbc114>:1) with 1 output partitions
17/10/03 07:01:18 INFO scheduler.DAGScheduler: Final stage: ResultStage 4 (take at <ipython-input-10-35862abbc114>:1)
17/10/03 07:01:18 INFO scheduler.DAGScheduler: Parents of final stage: List()
17/10/03 07:01:18 INFO scheduler.DAGScheduler: Missing parents: List()
17/10/03 07:01:18 INFO scheduler.DAGScheduler: Submitting ResultStage 4 (MapPartitionsRDD[27] at take at <ipython-input-10-35862abbc114>:1), which has no missing parents
17/10/03 07:01:19 INFO storage.MemoryStore: Block broadcast_9 stored as values in memory (estimated size 5.6 KB, free 883.8 KB)
17/10/03 07:01:19 INFO storage.MemoryStore: Block broadcast_9_piece0 stored as bytes in memory (estimated size 3.0 KB, free 886.9 KB)
17/10/03 07:01:19 INFO storage.BlockManagerInfo: Added broadcast_9_piece0 in memory on localhost:40075 (size: 3.0 KB, free: 208.7 MB)
17/10/03 07:01:19 INFO spark.SparkContext: Created broadcast 9 from broadcast at DAGScheduler.scala:1006
17/10/03 07:01:19 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 4 (MapPartitionsRDD[27] at take at <ipython-input-10-35862abbc114>:1)
17/10/03 07:01:19 INFO scheduler.TaskSchedulerImpl: Adding task set 4.0 with 1 tasks
17/10/03 07:01:19 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 4.0 (TID 4, localhost, partition 0,PROCESS_LOCAL, 2260 bytes)
17/10/03 07:01:19 INFO executor.Executor: Running task 0.0 in stage 4.0 (TID 4)
17/10/03 07:01:19 INFO rdd.HadoopRDD: Input split: hdfs://localhost:8020/user/training/episodes.avro:0+597
17/10/03 07:01:19 INFO codegen.GenerateUnsafeProjection: Code generated in 124.624053 ms
17/10/03 07:01:19 INFO executor.Executor: Finished task 0.0 in stage 4.0 (TID 4). 2237 bytes result sent to driver
17/10/03 07:01:19 INFO scheduler.DAGScheduler: ResultStage 4 (take at <ipython-input-10-35862abbc114>:1) finished in 0.415 s
17/10/03 07:01:19 INFO scheduler.DAGScheduler: Job 2 finished: take at <ipython-input-10-35862abbc114>:1, took 0.565858 s
17/10/03 07:01:19 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 4.0 (TID 4) in 415 ms on localhost (1/1)
17/10/03 07:01:19 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 4.0, whose tasks have all completed, from pool
Out[10]: [Row(title=u'The Eleventh Hour', air_date=u'3 April 2010', doctor=11)]
In [11]:
[Spark][Python]spark 从 avro 文件获取 Dataframe 的例子的更多相关文章
- [Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子:
[Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子: mydf001=sqlContext.read.format("jdbc").o ...
- Spark中如何生成Avro文件
研究spark的目的之一就是要取代MR,目前我司MR的一个典型应用场景即为生成Avro文件,然后加载到HIVE表里,所以如何在Spark中生成Avro文件,就是必然之路了. 我本人由于对java不熟, ...
- [Spark][Python]Spark Python 索引页
Spark Python 索引页 为了查找方便,建立此页 === RDD 基本操作: [Spark][Python]groupByKey例子
- [spark][python]Spark map 处理
map 就是对一个RDD的各个元素都施加处理,得到一个新的RDD 的过程 [training@localhost ~]$ cat names.txtYear,First Name,County,Sex ...
- python批量读取txt文件为DataFrame
我们有时候会批量处理同一个文件夹下的文件,并且希望读取到一个文件里面便于我们计算操作.比方我有下图一系列的txt文件,我该如何把它们写入一个txt文件中并且读取为DataFrame格式呢? 首先我们要 ...
- Python抓取远程文件获取真实文件名
用urllib下载远程文件并转存到hdfs服务器,在下载时,下载地址中不一定包含文件名,需要从连接信息中获取. 1 file_url = request.form.get('file_url') 2 ...
- Python——urllib函数网络文件获取
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- [Spark][Python]Spark Join 小例子
[training@localhost ~]$ hdfs dfs -cat people.json {"name":"Alice","pcode&qu ...
- [Spark][python]以DataFrame方式打开Json文件的例子
[Spark][python]以DataFrame方式打开Json文件的例子: [training@localhost ~]$ cat people.json{"name":&qu ...
随机推荐
- 网络基础 Windows控制台下Ftp使用简介
Windows控制台下Ftp使用简介 by:授客 QQ:1033553122 测试环境: ftp服务器所在主机ip:172.25.75.2 ftp用户目录:F:\ftp C:\Users\laif ...
- beta冲刺随笔集
团队成员 郑西坤 031602542 (队长) 陈俊杰 031602504 陈顺兴 031602505 张胜男 031602540 廖钰萍 031602323 雷光游 031602319 吴志鸿 03 ...
- JavaScript大杂烩3 - 理解JavaScript对象的封装性
JavaScript是面向对象的 JavaScript是一种基于对象的语言,你遇到的所有东西,包括字符串,数字,数组,函数等等,都是对象. 面向过程还是面向对象? JavaScript同时兼有的面向过 ...
- Scala之List,Set及Map基本操作
package big.data.analyse.dataSet import scala.collection.immutable.{TreeMap, TreeSet} import scala.c ...
- 选择is或者as操作符而不是做强制类型转换
无论何时,正确选择使用as运算符进行类型转换.比盲目的强制类型转换更安全,而且在运行时效率更高. 用as和is进行转换时,并不是对所有用户定义的类型都能完成,只是在运行时类型和目标类型匹配时,转换才能 ...
- [HDFS_add_1] HDFS 启动过程分析
0. 说明 HDFS 文件概念 && HDFS 启动过程分析 1. HDFS 文件概念 [1.1 NameNode 职能] 存储文件类型.大小.权限.路径等等元数据 通过 edits( ...
- 【hexo】03config文件配置详解
YAML 是专门用来写配置文件的语言,非常简洁和强大,我们的配置文件就是这种格式.需要了解的只有: # 我是文配置件的注释 重要提示,例如:"theme: landspace"中冒 ...
- gcc库链接
转载于https://blog.csdn.net/zhangdaisylove/article/details/45721667 1.库的分类 库有静态库和动态库,linux下静态库为.a,动态库为. ...
- January 29th, 2018 Week 05th Monday
Losing all hope was freedom. 彻底绝望就是真正的自由. Losing all the hopes, and we are free to challenge everyth ...
- 【16】有关python面向对象编程
面向对象编程 一.第一个案例---创建类 #__author:"吉" #date: 2018/10/27 0027 #function: # 设计类: ''' 1 类名:首字母大写 ...