Luogu3702 SDOI2017 序列计数 矩阵DP
不考虑质数的条件,可以考虑到一个很明显的$DP:$设$f_{i,j}$表示选$i$个数,和$mod\ p=j$的方案数,显然是可以矩阵优化$DP$的。
而且转移矩阵是循环矩阵,所以可以只用第一行的数字代替整个矩阵。当然了这道题$p \leq 100$矩阵比较小也可以直接做。
然后考虑至少要一个质数的条件,发现就是所有数参与$DP$的答案减去所有合数参与$DP$的答案,两次算出来相减即可。
#include<bits/stdc++.h>
#define ll long long
//This code is written by Itst
using namespace std;
inline int read(){
;
char c = getchar();
;
while(!isdigit(c)){
if(c == '-')
f = ;
c = getchar();
}
while(isdigit(c)){
a = (a << ) + (a << ) + (c ^ ');
c = getchar();
}
return f ? -a : a;
}
;
int N , M , P , ans;
];
struct matrix{
ll a[];
matrix(){memset(a , , sizeof(a));}
inline ll& operator [](int x){return a[x];}
matrix operator *(matrix b){
matrix c;
; i < P ; ++i)
; j < P ; ++j)
c[i] += a[j] * b[i - j < ? i - j + P : i - j];
; j < P ; ++j)
c[j] %= MOD;
return c;
}
}S , T , G;
int main(){
#ifndef ONLINE_JUDGE
freopen("in" , "r" , stdin);
//freopen("out" , "w" , stdout);
#endif
N = read();
M = read();
P = read();
; i < P && i <= M ; ++i)
G[i % P] = (M - i) / P + (bool)i;
S[] = ;
T = G;
int K = N;
while(K){
)
S = S * T;
T = T * T;
K >>= ;
}
ans = S[];
; i <= M ; ++i)
if(!nprime[i]){
--G[i % P];
for(int j = i ; j <= M / i ; ++j)
nprime[i * j] = ;
}
T = G;
S = matrix();
S[] = ;
K = N;
while(K){
)
S = S * T;
T = T * T;
K >>= ;
}
cout << (ans - S[] + MOD) % MOD;
;
}
Luogu3702 SDOI2017 序列计数 矩阵DP的更多相关文章
- [BZOJ 4818/LuoguP3702][SDOI2017] 序列计数 (矩阵加速DP)
题面: 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4818 Solution 看到这道题,我们不妨先考虑一下20分怎么搞 想到暴力,本蒟 ...
- [Sdoi2017]序列计数 [矩阵快速幂]
[Sdoi2017]序列计数 题意:长为\(n \le 10^9\)由不超过\(m \le 2 \cdot 10^7\)的正整数构成的和为\(t\le 100\)的倍数且至少有一个质数的序列个数 总- ...
- [Sdoi2017]序列计数 矩阵优化dp
题目 https://www.lydsy.com/JudgeOnline/problem.php?id=4818 思路 先考虑没有质数限制 dp是在同余系下的,所以\(f[i][j]\)表示前i个点, ...
- 【bzoj4818】[Sdoi2017]序列计数 矩阵乘法
原文地址:http://www.cnblogs.com/GXZlegend/p/6825132.html 题目描述 Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的 ...
- BZOJ 4818 [Sdoi2017]序列计数 ——矩阵乘法
发现转移矩阵是一个循环矩阵. 然后循环矩阵乘以循环矩阵还是循环矩阵. 据说还有FFT并且更优的做法. 之后再看吧 #include <map> #include <cmath> ...
- luogu 3702 [SDOI2017]序列计数 矩阵乘法+容斥
现在看来这道题真的不难啊~ 正着求不好求,那就反着求:答案=总-全不是质数 这里有一个细节要特判:1不是质数,所以在算全不是质数的时候要特判1 code: #include <bits/stdc ...
- 【BZOJ4818】[Sdoi2017]序列计数 DP+矩阵乘法
[BZOJ4818][Sdoi2017]序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ,这n个数 ...
- BZOJ4818 LOJ2002 SDOI2017 序列计数 【矩阵快速幂优化DP】*
BZOJ4818 LOJ2002 SDOI2017 序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数. Alice还希 ...
- BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法
BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ...
随机推荐
- CloudSim源代码学习——任务单元(Cloudlet)
/* * Title: CloudSim Toolkit * Description: CloudSim (Cloud Simulation) Toolkit for Modeling and Sim ...
- 安卓开发_数据存储技术_sqlite
一.SQLite SQLite第一个Alpha版本诞生于2000年5月,它是一款轻量级数据库,它的设计目标是嵌入式的,占用资源非常的低,只需要几百K的内存就够了.SQLite已经被多种软件和产品使用 ...
- Git服务器配置及本地克隆提交、服务器获取
1.服务器Git安装配置 相关链接 相关链接 注意ssh-keygen .修改权限 权限: 相关链接 2.本地获取 git clone name@ip:服务器项目位置 相关链接 3.创建 ...
- vue权威指南笔记02——对比v-if与v-show
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- tomcat 7.0 最大连接数和线程设置
部署项目时需要根据服务器配置调整连接数 <Connector port="8080" protocol="HTTP/1.1"URIEncoding=&qu ...
- macOS 下NFS 文件系统挂载
主要有两种方式: 使用:resvport选项, mount 挂载命令时. 使用:insecure选项, exportfs 文件配置时. sudo mount -o resvport IP:Addr b ...
- 自定义mysql类用于快速执行数据库查询以及将查询结果转为json文件
由于每次连接数据库进行查询比较麻烦,偶尔还需要将查询结果转为json格式的文件, 因此暂时定义一个mysql的类,将这些常用的方法进行封装,便于直接调用(代码如下,个人用,没写什么注释). 注:导入了 ...
- Git命令实现本地文件推送到git仓库
前提: ①确定本机(windows环境)已经安装git(https://git-scm.com/downloads) ②建立好远程Git仓库 1.在你想推送的文件夹下:右键→选择Git Bath ...
- .NET 序列化成XML, 并且格式化
现有Person类: [Serializable] public class Person { public string Name; public string Info; public Perso ...
- java.lang.RuntimeException: org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): com.demoDao.getXXX;
java.lang.RuntimeException: org.apache.ibatis.binding.BindingException: Invalid bound statement (not ...