SSE图像算法优化系列六:OpenCv关于灰度积分图的SSE代码学习和改进。
最近一直沉迷于SSE方面的优化,实在找不到想学习的参考资料了,就拿个笔记本放在腿上翻翻OpenCv的源代码,无意中看到了OpenCv中关于积分图的代码,仔细研习了一番,觉得OpenCv对SSE的灵活运用真的做的很好,这里记录下我对该段代码的品味并将其思路扩展到其他通道数的图像。
该核心代码位于:Opencv 3.0\opencv\sources\modules\imgproc\src\sumpixels.cpp文件中。
我们贴出最感兴趣的一部分代码以便分析:
bool operator()(const uchar * src, size_t _srcstep,int * sum, size_t _sumstep,double * sqsum, size_t, int * tilted, size_t,Size size, int cn) const
{
if (sqsum || tilted || cn != || !haveSSE2) return false;
// the first iteration
memset(sum, , (size.width + ) * sizeof(int));
__m128i v_zero = _mm_setzero_si128(), prev = v_zero;
int j = ;
// the others
for (int i = ; i < size.height; ++i)
{
const uchar * src_row = src + _srcstep * i;
int * prev_sum_row = (int *)((uchar *)sum + _sumstep * i) + ;
int * sum_row = (int *)((uchar *)sum + _sumstep * (i + )) + ;
sum_row[-] = ;
prev = v_zero;
j = ;
for ( ; j + < size.width; j += )
{
__m128i vsuml = _mm_loadu_si128((const __m128i *)(prev_sum_row + j));
__m128i vsumh = _mm_loadu_si128((const __m128i *)(prev_sum_row + j + ));
__m128i el8shr0 = _mm_loadl_epi64((const __m128i *)(src_row + j));
__m128i el8shr1 = _mm_slli_si128(el8shr0, );
__m128i el8shr2 = _mm_slli_si128(el8shr0, );
__m128i el8shr3 = _mm_slli_si128(el8shr0, );
vsuml = _mm_add_epi32(vsuml, prev);
vsumh = _mm_add_epi32(vsumh, prev);
__m128i el8shr12 = _mm_add_epi16(_mm_unpacklo_epi8(el8shr1, v_zero),
_mm_unpacklo_epi8(el8shr2, v_zero));
__m128i el8shr03 = _mm_add_epi16(_mm_unpacklo_epi8(el8shr0, v_zero),
_mm_unpacklo_epi8(el8shr3, v_zero));
__m128i el8 = _mm_add_epi16(el8shr12, el8shr03);
__m128i el4h = _mm_add_epi16(_mm_unpackhi_epi16(el8, v_zero),
_mm_unpacklo_epi16(el8, v_zero));
vsuml = _mm_add_epi32(vsuml, _mm_unpacklo_epi16(el8, v_zero));
vsumh = _mm_add_epi32(vsumh, el4h);
_mm_storeu_si128((__m128i *)(sum_row + j), vsuml);
_mm_storeu_si128((__m128i *)(sum_row + j + ), vsumh);
prev = _mm_add_epi32(prev, _mm_shuffle_epi32(el4h, _MM_SHUFFLE(, , , )));
}
for (int v = sum_row[j - ] - prev_sum_row[j - ]; j < size.width; ++j)
sum_row[j] = (v += src_row[j]) + prev_sum_row[j];
}
为了说明更方便,这里贴出我做的普通C语言的代码和重新优化后的SSE代码。
普通C语言:
void GetGrayIntegralImage(unsigned char *Src, int *Integral, int Width, int Height, int Stride)
{
memset(Integral, , (Width + ) * sizeof(int)); // 第一行都为0
for (int Y = ; Y < Height; Y++)
{
unsigned char *LinePS = Src + Y * Stride;
int *LinePL = Integral + Y * (Width + ) + ; // 上一行位置
int *LinePD = Integral + (Y + ) * (Width + ) + ; // 当前位置,注意每行的第一列的值都为0
LinePD[-] = ; // 第一列的值为0
for (int X = , Sum = ; X < Width; X++)
{
Sum += LinePS[X]; // 行方向累加
LinePD[X] = LinePL[X] + Sum; // 更新积分图
}
}
}
优化后的SSE算法:
void GetGrayIntegralImage(unsigned char *Src, int *Integral, int Width, int Height, int Stride)
{
memset(Integral, , (Width + ) * sizeof(int)); // 第一行都为0
int BlockSize = , Block = Width / BlockSize;
for (int Y = ; Y < Height; Y++)
{
unsigned char *LinePS = Src + Y * Stride;
int *LinePL = Integral + Y * (Width + ) + ; // 上一行位置
int *LinePD = Integral + (Y + ) * (Width + ) + ; // 当前位置,注意每行的第一列的值都为0
LinePD[-] = ;
__m128i PreV = _mm_setzero_si128();
__m128i Zero = _mm_setzero_si128();
for (int X = ; X < Block * BlockSize; X += BlockSize)
{
__m128i Src_Shift0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(LinePS + X)), Zero); // A7 A6 A5 A4 A3 A2 A1 A0
__m128i Src_Shift1 = _mm_slli_si128(Src_Shift0, ); // A6 A5 A4 A3 A2 A1 A0 0
__m128i Src_Shift2 = _mm_slli_si128(Src_Shift1, ); // 移位改成基于Shift0,速度慢,Why? // A5 A4 A3 A2 A1 A0 0 0
__m128i Src_Shift3 = _mm_slli_si128(Src_Shift2, ); // A4 A3 A2 A1 A0 0 0 0
__m128i Shift_Add12 = _mm_add_epi16(Src_Shift1, Src_Shift2); // A6+A5 A5+A4 A4+A3 A3+A2 A2+A1 A1+A0 A0+0 0+0
__m128i Shift_Add03 = _mm_add_epi16(Src_Shift0, Src_Shift3); // A7+A4 A6+A3 A5+A2 A4+A1 A3+A0 A2+0 A1+0 A0+0
__m128i Low = _mm_add_epi16(Shift_Add12, Shift_Add03); // A7+A6+A5+A4 A6+A5+A4+A3 A5+A4+A3+A2 A4+A3+A2+A1 A3+A2+A1+A0 A2+A1+A0+0 A1+A0+0+0 A0+0+0+0
__m128i High = _mm_add_epi32(_mm_unpackhi_epi16(Low, Zero), _mm_unpacklo_epi16(Low, Zero)); // A7+A6+A5+A4+A3+A2+A1+A0 A6+A5+A4+A3+A2+A1+A0 A5+A4+A3+A2+A1+A0 A4+A3+A2+A1+A0
__m128i SumL = _mm_loadu_si128((__m128i *)(LinePL + X + ));
__m128i SumH = _mm_loadu_si128((__m128i *)(LinePL + X + ));
SumL = _mm_add_epi32(SumL, PreV);
SumL = _mm_add_epi32(SumL, _mm_unpacklo_epi16(Low, Zero));
SumH = _mm_add_epi32(SumH, PreV);
SumH = _mm_add_epi32(SumH, High);
PreV = _mm_add_epi32(PreV, _mm_shuffle_epi32(High, _MM_SHUFFLE(, , , )));
_mm_storeu_si128((__m128i *)(LinePD + X + ), SumL);
_mm_storeu_si128((__m128i *)(LinePD + X + ), SumH);
}
for (int X = Block * BlockSize, V = LinePD[X - ] - LinePL[X - ]; X < Width; X++)
{
V += LinePS[X];
LinePD[X] = V + LinePL[X];
}
}
我们先来解释下这段代码的SSE优化过程吧。
首先,用_mm_loadl_epi64一次性加载8个字节数据到XMM寄存器中,其中寄存器的高8位位0,此时寄存器的数据为:
高位 0 0 0 0 0 0 0 0 A7 A6 A5 A4 A3 A2 A1 A0 低位 (8位)
因为涉及到加法,并且最大为8个字节数据的加法,因此转换到16位数据类型,使用_mm_unpacklo_epi8结合zero即可实现。
此时XMM寄存器内容变为:
Src_Shift0 A7 A6 A5 A4 A3 A2 A1 A0 (16位)
此后有3次移位分别得到:
Src_Shift1 A6 A5 A4 A3 A2 A1 A0 0 (16位)
Src_Shift2 A5 A4 A3 A2 A1 A0 0 0 (16位)
Src_Shift3 A4 A3 A2 A1 A0 0 0 0 (16位) 通过_mm_add_epi16分别对4组16位数据进行8次相加:
Shift_Add12 A6+A5 A5+A4 A4+A3 A3+A2 A2+A1 A1+A0 A0+0 0+0 (16位)
Shift_Add03 A7+A4 A6+A3 A5+A2 A4+A1 A3+A0 A2+0 A1+0 A0+0 (16位)
再对他们进行相加:
Low A7+A6+A5+A4 A6+A5+A4+A3 A5+A4+A3+A2 A4+A3+A2+A1 A3+A2+A1+A0 A2+A1+A0+0 A1+A0+0+0 A0+0+0+0
注意到低4位的16位数已经是连续相加的数据了,只要将他们转换为32位就可以直接使用。
而通过 __m128i High = _mm_add_epi32(_mm_unpackhi_epi16(Low, Zero), _mm_unpacklo_epi16(Low, Zero)); 这一句则可以把前面的高4位连续相加的值拼接起来得到:
High A7+A6+A5+A4+A3+A2+A1+A0 A6+A5+A4+A3+A2+A1+A0 A5+A4+A3+A2+A1+A0 A4+A3+A2+A1+A0
后面的操作则顺理成章了。
注意到我核心的改动在于原始代码中的el8shr12和el8shr03的计算中的_mm_unpacklo_epi8被消除了,而在el8shr0一句中增加了一个_mm_unpacklo_epi8,因此少了3次这个函数,很明显这样做是不会改变计算结果的。
另外源代码中的部分_mm_add_epi16被我用_mm_add_epi32代替了,这主要是因为用_mm_add_epi32意义更明显,而且由于高位数据为0,他们的执行结果不会有任何区别。
还有一点在测试时发现,如果Src_Shift2,Src_Shift3的移位是基于Src_Shift0,即使用如下代码:
__m128i Src_Shift2 = _mm_slli_si128(Src_Shift0, );
__m128i Src_Shift3 = _mm_slli_si128(Src_Shift0, );
速度会有较为明显的下降,难道说移动的位数多少和CPU的耗时有关?
以上是灰度模式的算法,在我的笔记本电脑上,SSE优化后的语句虽然增加了很多,但是执行效率约能提升30%,不过在一些PC上,普通的C和SSE优化后却没有啥速度区别了,这也不知道是为什么了。
如果是针对24位或者32位图像,基本的优化思想是一致的,不过有更多的细节需要自己注意。
24位或者32位图像在任何机器配置上,速度都能有30%的提升的。
还是感觉这种算法用文字很难表述清楚,用代码再加上自己的空间组合可能更能理解吧。

SSE图像算法优化系列六:OpenCv关于灰度积分图的SSE代码学习和改进。的更多相关文章
- OpenCv关于灰度积分图的SSE代码学习和改进。
最近一直沉迷于SSE方面的优化,实在找不到想学习的参考资料了,就拿个笔记本放在腿上翻翻OpenCv的源代码,无意中看到了OpenCv中关于积分图的代码,仔细研习了一番,觉得OpenCv对SSE的灵活运 ...
- SSE图像算法优化系列十四:局部均方差及局部平方差算法的优化。
关于局部均方差有着较为广泛的应用,在我博客的基于局部均方差相关信息的图像去噪及其在实时磨皮美容算法中的应用及使用局部标准差实现图像的局部对比度增强算法中都有谈及,即可以用于去噪也可以用来增强图像,但是 ...
- SSE图像算法优化系列十三:超高速BoxBlur算法的实现和优化(Opencv的速度的五倍)
在SSE图像算法优化系列五:超高速指数模糊算法的实现和优化(10000*10000在100ms左右实现) 一文中,我曾经说过优化后的ExpBlur比BoxBlur还要快,那个时候我比较的BoxBlur ...
- SSE图像算法优化系列二十二:优化龚元浩博士的曲率滤波算法,达到约1000 MPixels/Sec的单次迭代速度
2015年龚博士的曲率滤波算法刚出来的时候,在图像处理界也曾引起不小的轰动,特别是其所说的算法的简洁性,以及算法的效果.执行效率等方面较其他算法均有一定的优势,我在该算法刚出来时也曾经有关注,不过 ...
- SSE图像算法优化系列二十五:二值图像的Euclidean distance map(EDM)特征图计算及其优化。
Euclidean distance map(EDM)这个概念可能听过的人也很少,其主要是用在二值图像中,作为一个很有效的中间处理手段存在.一般的处理都是将灰度图处理成二值图或者一个二值图处理成另外一 ...
- SSE图像算法优化系列二十三: 基于value-and-criterion structure 系列滤波器(如Kuwahara,MLV,MCV滤波器)的优化。
基于value-and-criterion structure方式的实现的滤波器在原理上其实比较简单,感觉下面论文中得一段话已经描述的比较清晰了,直接贴英文吧,感觉翻译过来反而失去了原始的韵味了. T ...
- SSE图像算法优化系列二十:一种快速简单而又有效的低照度图像恢复算法。
又有很久没有动笔了,主要是最近没研究什么东西,而且现在主流的趋势都是研究深度学习去了,但自己没这方面的需求,同时也就很少有动力再去看传统算法,今天一个人在家,还是抽空分享一个简单的算法吧. 前段日子在 ...
- SSE图像算法优化系列十:简单的一个肤色检测算法的SSE优化。
在很多场合需要高效率的肤色检测代码,本人常用的一个C++版本的代码如下所示: void IM_GetRoughSkinRegion(unsigned char *Src, unsigned char ...
- SSE图像算法优化系列十二:多尺度的图像细节提升。
无意中浏览一篇文章,中间提到了基于多尺度的图像的细节提升算法,尝试了一下,还是有一定的效果的,结合最近一直研究的SSE优化,把算法的步骤和优化过程分享给大家. 论文的全名是DARK IMAGE ENH ...
随机推荐
- BZOJ3052/UOJ#58 [wc2013]糖果公园 莫队 带修莫队 树上莫队
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ3052.html 题目传送门 - BZOJ3052 题目传送门 - UOJ#58 题意 给定一棵树,有 ...
- Linux安装Tomcat-Nginx-FastDFS-Redis-Solr-集群——【第十一集之安装FastDFS】
1,安装FastDFS之前,先安装libevent工具包. yum -y install libevent 2,安装libfastcommonV1.0.7工具包.有可能找到新版本的zip压缩包:lib ...
- L3-002 特殊堆栈 (30 分) 模拟stl
堆栈是一种经典的后进先出的线性结构,相关的操作主要有“入栈”(在堆栈顶插入一个元素)和“出栈”(将栈顶元素返回并从堆栈中删除).本题要求你实现另一个附加的操作:“取中值”——即返回所有堆栈中元素键值的 ...
- Kafka概述及安装部署
一.Kafka概述 1.Kafka是一个分布式流媒体平台,它有三个关键功能: (1)发布和订阅记录流,类似于消息队列或企业消息传递系统: (2)以容错的持久方式存储记录流: (3)记录发送时处理流. ...
- Flume的概述和安装部署
一.Flume概述 Flume是一种分布式.可靠且可用的服务,用于有效的收集.聚合和移动大量日志文件数据.Flume具有基于流数据流的简单灵活的框架,具有可靠的可靠性机制和许多故障转移和恢复机制,具有 ...
- ctf study of jarvisoj reverse
[61dctf] androideasy 164求解器 50 相反 脚本如下: s='' a=113, 123, 118, 112, 108, 94, 99, 72, 38, 68, 72, 87, ...
- ES搜索社区
好问题 1.比如我要索引的条目为“33分钟侦探”,我想在用户输入“3”.“33”.“三三”.“三十三”.“三十三分钟”等的情况下都命中该条目,请问有没有什么好的方式实现? PS:使用的是ansj分词器 ...
- 用户体验—微软Edge浏览器
我现在使用的浏览器是win10自带的Edge浏览器 用户界面: 首先整体界面的话是清晰,一目了然,而且记住用户选择: 1.微软必应搜索的主题分类明确,查询简洁方便.查询语句简单: 2 .信息覆盖程度非 ...
- 2602 ACM 杭电 骨头容器 01背包
题意:装骨头的容器大小固定,有一堆骨头,已知骨头的价值和大小,在不超过容积大小的情况下,问:所装骨头的最大价值? 思路:典型的01背包问题,不需要有任何的变动. 模板: for(int j=v;j&g ...
- HDU5293 : Tree chain problem
问题即:选择价值和最多的链,使得每个点最多被一条链覆盖. 那么考虑其对偶问题:选择最少的点(每个点可以重复选),使得每条链上选了至少$w_i$个点. 那么将链按照LCA的深度从大到小排序,每次若发现点 ...