唯一ID算法之:snowflake(Java版本)
Twitter开源的算法,简单易用。
/**
* Twitter_Snowflake<br>
* SnowFlake的结构如下(每部分用-分开):<br>
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
* 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
* 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
* 加起来刚好64位,为一个Long型。<br>
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
*/
public class SnowflakeIdWorker { // ==============================Fields===========================================
/** 开始时间截 (2015-01-01) */
private final long twepoch = 1420041600000L; /** 机器id所占的位数 */
private final long workerIdBits = 5L; /** 数据标识id所占的位数 */
private final long datacenterIdBits = 5L; /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
private final long maxWorkerId = -1L ^ (-1L << workerIdBits); /** 支持的最大数据标识id,结果是31 */
private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); /** 序列在id中占的位数 */
private final long sequenceBits = 12L; /** 机器ID向左移12位 */
private final long workerIdShift = sequenceBits; /** 数据标识id向左移17位(12+5) */
private final long datacenterIdShift = sequenceBits + workerIdBits; /** 时间截向左移22位(5+5+12) */
private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
private final long sequenceMask = -1L ^ (-1L << sequenceBits); /** 工作机器ID(0~31) */
private long workerId; /** 数据中心ID(0~31) */
private long datacenterId; /** 毫秒内序列(0~4095) */
private long sequence = 0L; /** 上次生成ID的时间截 */
private long lastTimestamp = -1L; //==============================Constructors=====================================
/**
* 构造函数
* @param workerId 工作ID (0~31)
* @param datacenterId 数据中心ID (0~31)
*/
public SnowflakeIdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < ) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < ) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
} // ==============================Methods==========================================
/**
* 获得下一个ID (该方法是线程安全的)
* @return SnowflakeId
*/
public synchronized long nextId() {
long timestamp = timeGen(); //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(
String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
} //如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + ) & sequenceMask;
//毫秒内序列溢出
if (sequence == ) {
//阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
}
//时间戳改变,毫秒内序列重置
else {
sequence = 0L;
} //上次生成ID的时间截
lastTimestamp = timestamp; long l0 = timestamp - twepoch;
System.out.println("=========================print each convert");
System.out.println(l0);
long l1 = l0 << timestampLeftShift;
System.out.println(l1);
long l2 = datacenterId << datacenterIdShift;
System.out.println(l2);
long l3 = workerId << workerIdShift;
System.out.println(l3);
System.out.println(sequence);
System.out.println(l1 +"|" + l2+"="+(l1 | l2));
System.out.println(l1 +"|" + l2+"|"+l3+"="+(l1 | l2|l3));
System.out.println("=========================print end");
//移位并通过或运算拼到一起组成64位的ID
return ((timestamp - twepoch) << timestampLeftShift) //
| (datacenterId << datacenterIdShift) //
| (workerId << workerIdShift) //
| sequence;
} /**
* 阻塞到下一个毫秒,直到获得新的时间戳
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
} /**
* 返回以毫秒为单位的当前时间
* @return 当前时间(毫秒)
*/
protected long timeGen() {
return System.currentTimeMillis();
} //==============================Test=============================================
/** 测试 */
public static void main(String[] args) {
SnowflakeIdWorker idWorker = new SnowflakeIdWorker(, );
for (int i = ; i < ; i++) {
try {
Thread.sleep();
} catch (InterruptedException e) {
e.printStackTrace();
}
long id = idWorker.nextId();
System.out.println(id);
}
}
}
PS:顺便复习一下位运算
public static void main(String[] args) {
int a = ; /* 60 = 0011 1100 */
int b = ; /* 13 = 0000 1101 */
int c = ;
c = a & b; /* 12 = 0000 1100 */
System.out.println("a & b = " + c );
c = a | b; /* 61 = 0011 1101 */
System.out.println("a | b = " + c );
c = a ^ b; /* 49 = 0011 0001 */
System.out.println("a ^ b = " + c );
c = ~a; /*-61 = 1100 0011 */
System.out.println("~a = " + c );
c = a << ; /* 240 = 1111 0000 */
System.out.println("a << 2 = " + c );
c = a >> ; /* 15 = 1111 */
System.out.println("a >> 2 = " + c );
c = a >>> ; /* 15 = 0000 1111 */
System.out.println("a >>> 2 = " + c );
}
唯一ID算法之:snowflake(Java版本)的更多相关文章
- 唯一id算法
https://blog.csdn.net/guodongcc322/article/details/55211273 https://blog.csdn.net/weixin_36751895/ar ...
- Twitter的分布式自增ID算法snowflake (Java版)
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种 ...
- 微博短链接的生成算法(Java版本)
最近看到微博的短链接真是很火啊,新浪.腾讯.搜狐等微博网站都加入了短链接的功能.之所以要是使用短链接,主要是因为微博只允许发140 字,如果链接地址太长的话,那么发送的字数将大大减少.短链接的主要职责 ...
- 根据twitter的snowflake算法生成唯一ID
C#版本 /// <summary> /// 根据twitter的snowflake算法生成唯一ID /// snowflake算法 64 位 /// 0---0000000000 000 ...
- 分布式唯一id:snowflake算法思考
匠心零度 转载请注明原创出处,谢谢! 缘起 为什么会突然谈到分布式唯一id呢?原因是最近在准备使用RocketMQ,看看官网介绍: 一句话,消息可能会重复,所以消费端需要做幂等.为什么消息会重复后续R ...
- 分布式系统-主键唯一id,订单编号生成-雪花算法-SnowFlake
分布式系统下 我们每台设备(分布式系统-独立的应用空间-或者docker环境) * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作 ...
- C# 根据twitter的snowflake算法生成唯一ID
C# 版算法: using System; using System.Collections.Generic; using System.Linq; using System.Text; using ...
- 分布式自增ID算法snowflake (Java版)
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种 ...
- 【Java】分布式自增ID算法---雪花算法 (snowflake,Java版)
一般情况,实现全局唯一ID,有三种方案,分别是通过中间件方式.UUID.雪花算法. 方案一,通过中间件方式,可以是把数据库或者redis缓存作为媒介,从中间件获取ID.这种呢,优点是可以体现全局的递增 ...
随机推荐
- HDU 6119 小小粉丝度度熊 (区间去重)【尺取】
<题目链接> 度度熊决定每天都在星星小姐的贴吧里面签到. 但是度度熊是一个非常健忘的孩子,总有那么几天,度度熊忘记签到,于是就断掉了他的连续签到. 不过度度熊并不是非常悲伤,因为他有m张补 ...
- Codeforces 1036C Classy Numbers 【DFS】
<题目链接> 题目大意: 对于那些各个位数上的非0数小于等于3的数,我们称为 classy number ,现在给你一个闭区间 [L,R] (1≤L≤R≤1018).,问你这个区间内有多 ...
- 其实我们可以少写点if else和switch
前言 作为搬砖在第一线的底层工人,业务场景从来是没有做不到只有想不到的复杂. 不过他强任他强,if-else全搞定,搬就完了.但是随着业务迭代或者项目交接,自己在看自己或者别人的if代码的时候,心情就 ...
- iOS12系统应用发送普通邮件构建邮件
iOS12系统应用发送普通邮件构建邮件 当确定设备支持邮件发送功能后,开发者就可以实现该功能.根据是否包含附件,邮件可以分为普通邮件和附件邮件两种.本节首先讲解如何发送普通邮件.实现过程如下: 1.构 ...
- 服务端spark gbdt模型计算性能优化
服务端使用训练出来的模型,spark模型计算第一步是实现spark模型加载. 线上服务对用户体验影响极大,故需要对模型使用进行优化. 1.多线程并发进行计算,线上两个服务.优化cpu 2.在扩召回集, ...
- LeetCode(283. 移动零)
问题描述 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序. 示例: 输入: [0,1,0,3,12] 输出: [1,3,12,0,0] 说明: 必须在原数 ...
- IAR map 文件报告与Flash 大小关系
- K1 K2作为中断源控制红色LED灯,实现任意键按一下LED灯亮或者灭
#include "stm32f10x.h" // 相当于51单片机中的 #include <reg51.h> #include "stm32f10x_gpi ...
- JS将日期转为距现在的时间长度
最近在弄一个回忆网站,其中有个一板块类似于情侣空间的纪念日. 照着弄了个类似的,效果如下: 在处理过程中需要把时间戳转为Date()对象,然后与本地时间相减获得时间差,通过运算转换成对应的年月日时长, ...
- IntelliJ IDEA配置Springboot2.x 通过devtools实现代码热部署,提高调试效率
1.pom.xml添加依赖: <dependency> <groupId>org.springframework.boot</groupId> <artifa ...