pandas中的空值处理
1.空值
1.1 有两种丢失数据:
- None: Python自带的数据类型 不能参与到任何计算中
- np.nan: float类型 能参与计算,但结果总是nan
# None+2 # 报错
# np.nan + 2 # 值仍然是nan
1.2 np.nan(NaN)
数组直接运算会得到nan,但可以使用np.nansum()函数来计算nan,此时视nan为0。
ndarr = np.array([1,2,3,np.nan])
np.sum(ndarr)
np.nansum(ndarr)
Series和DataForm可以直接处理nan
s1 = Series([1,2,3,np.nan])
s1 0 1.0
1 2.0
2 3.0
3 NaN
dtype: float64 s1.sum()
6.0
df1 = DataFrame([1,2,3,np.nan])
df1
df1.sum()
0 6.0
dtype: float64
1.3 pandas中的None与NaN
s1 = Series([1,2,3,np.nan,None]) #
s1 0 1.0
1 2.0
2 3.0
3 NaN
4 NaN
dtype: float64
df1 = DataFrame([1,2,3,np.nan,None]) # Series和DataFrame都会自动把None转换成NaN 然后 运算的时候会把NaN当成0
df1
2. 空值检测与空值处理
isnull()
notnull()
dropna()
: 过滤丢失数据fillna()
: 填充丢失数据
2.1 空值检测
isnull()
notnull()
用randint创建一个5*5的DataFrame作为例子
df = DataFrame(data=np.random.randint(0,100,size=(5,5)),columns=list('abcde'))
df.loc[1,'a'] = np.nan
df.loc[3,'b'] = np.nan
df.loc[0,'e'] = np.nan
isnull配合any使用,可以查看每一行是否存在空值
可以控制axis改变方向,查看某一列是否存在空值
2.2 空值过滤
dropna()
可以选择过滤的是行还是列(默认为行)
df.dropna() # 默认 保留没有空值的行
也可以选择过滤的方式 how = 'all',代表全部为空则删除
2.3 空值填充¶
fillna()
# value=None 默认情况
df.fillna(value=50)
也可以选择从前面找值来填充还是从后面找值来填充
# method指的是 如何对空值进行填充
# 'bfill'从后面找值来填充 ffill从前面找值来填充
# df.fillna(method='bfill')
# df.fillna(method='ffill') # 默认是纵向(从相邻样本的 同一特征中找值)
# df.fillna(method='bfill',axis=0) # 竖向
df.fillna(method='bfill',axis=1) # 横向
还可以限定最多填充几个连续的NaN
df.fillna(method='bfill',limit=1,inplace=True) # 用来限制填充多少个
fillna()方法总结:
# value=None, method=None, axis=None, inplace=False, limit=None
# value直接指定 用什么值来填充
# method 指定填充方法
# axis 指定填充值的方向
# inplace 指的是是否对原df进行替换
# limit 限制填充的个数
df.fillna()
pandas中的空值处理的更多相关文章
- python数据分析pandas中的DataFrame数据清洗
pandas中的DataFrame中的空数据处理方法: 方法一:直接删除 1.查看行或列是否有空格(以下的df为DataFrame类型,axis=0,代表列,axis=1代表行,以下的返回值都是行或列 ...
- Python学习教程:Pandas中第二好用的函数
从网上看到一篇好的文章是关于如何学习python数据分析的迫不及待想要分享给大家,大家也可以点链接看原博客.希望对大家的学习有帮助. 本次的Python学习教程是关于Python数据分析实战基础相关内 ...
- pandas中na_values与keep_default_na
我们在使用pandas读取文件时,常会遇到某个字段为NaN. 一般情况下,这时因为文件中包含空值导致的,因为pandas默认会将 '-1.#IND', '1.#QNAN', '1.#IND', '-1 ...
- (数据科学学习手札131)pandas中的常用字符串处理方法总结
本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在日常开展数据分析的过程中,我们经常需要对 ...
- pandas中常用的操作一
pandas中常用的功能: 1.显示所有的列的信息,999表示显示最大的列为999 pd.options.display.max_columns=999 2.读取excel时设置使用到列的名称,和列的 ...
- Pandas中DateFrame修改列名
Pandas中DateFrame修改列名 在做数据挖掘的时候,想改一个DataFrame的column名称,所以就查了一下,总结如下: 数据如下: >>>import pandas ...
- 在PreparedStatement中设置空值
在PreparedStatement中设置空值 分类: Work& Study java2009-09-10 09:56 922人阅读 评论(0) 收藏 举报 nulltypes数据库 ...
- pandas中的分组技术
目录 1 分组操作 1.1 按照列进行分组 1.2 按照字典进行分组 1.3 根据函数进行分组 1.4 按照list组合 1.5 按照索引级别进行分组 2 分组运算 2.1 agg 2 ...
- Java中的空值判断
Java中的空值判断 /** * 答案选项: * A YouHaidong * B 空 * C 编译错误 * D 以上都不对 */ package com.you.model; /** * @auth ...
随机推荐
- javaScript放在head和body的区别
JavaScript写在哪里? 内部:Html网页的<body></body>中: 内部:Html网页的<head></head>中: 外部:外部js文 ...
- UIWebView 缓存
//存储cookie的方法 - (void)saveCookies { // 创建一个可变字典存放cookie NSMutableDictionary *fromappDict = [NSMutabl ...
- release 步骤
一:在新的 TR 里面创建自己的task 1: /n se01 进入自己的用户名下面 2:display 3:选中自己的名字右键>check object 4:选中自己的名字右键> dir ...
- nuxtJs中直接使用自带的@nuxtjs/axios
最初我以为在nuxtjs中是需要重新npm install axios,但是其实nuxtjs自己集成了这个数据渲染方法 你只需在nuxt.config.js中配置一下就可以了 modules: [ / ...
- Go 初体验 - 令人惊叹的语法 - defer.3 - defer 函数参数计算时机
defer 函数的参数计算时机 定义一个 defer 函数,接收参数 n: 调用: 输出: 有点惊讶,为什么不是 100 200 200? go 语言里,defer 函数的参数是在定义位置被计算的,也 ...
- 关于angular2 打包(一)
在讲到angular2 及以上项目打包之前,我先讲一下.angular cli 拥有自己的打包工具,熟悉的可以直接上手.如果用不惯,也可以去使用webpack 之类的.内置的systemjs也是很好用 ...
- python_study-1
# Author:larlly'''函数1.在Python交互式命令行下,可以直接输入代码,然后执行,并立刻得到结果.2.文本编辑器推荐俩款 http://www.sublimetext.com/ h ...
- Qt做发布版,解决声音和图片、中文字体乱码问题(需要在main里写上QApplication::addLibraryPath("./plugins")才能加载图片,有图片,很清楚)
前些天做Qt发布版,发现居然不显示图片,后来才发现原来还有图片的库没加!找找吧,去qt的安装包,我装在了F盘,在F盘F:/QT/qt/plugins,找到了plugins,这里面有个 imagefor ...
- K8S学习笔记之ETCD启动失败注意事项
最近搭建K8S集群遇到ETCD的报错,报错信息如下,一定要关闭防火墙.iptables和SELINUX,三个都要关闭!! Mar 26 20:39:24 k8s-m1 etcd[6437]: heal ...
- Pandas截取列的一部分
以股票代码为例: 型式为:6位数字+"."+交易所代码,如600028.SH 如只需保留前6位: pattern = '(\w+)(?:.SZ|.SH)$' df['股票代码'] ...