牛客多校第三场 A- PACM Team 背包/记忆路径
https://www.nowcoder.com/acm/contest/141#question
一眼背包,用四维dp记录在A,B,C,D条件限制下可以获得的最大知识点,但是题目要求输出路径,在输入中包含0这样的样例,原本的递归寻找路径变的不可行,就需要开五维dp记录在i组条件下ABCD的最大知识点,空间复杂度为36 ^ 5,测试可以通过,但本题有更加优秀的解法,就是在原本四维dp的条件下同时用状压记录已经选择的物品,输出的时候只要输出加入状压的物品即可。
#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
#define For(i, x, y) for(int i=x; i<=y; i++)
#define _For(i, x, y) for(int i=x; i>=y; i--)
#define Mem(f, x) memset(f, x, sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i = 0; i <= N ; i ++) u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
using namespace std;
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
inline int read()
{
int now=;register char c=getchar();
for(;!isdigit(c);c=getchar());
for(;isdigit(c);now=now*+c-'',c=getchar());
return now;
}
int N,M;
struct DP{
ULL c;
int num;
}dp[maxn][maxn][maxn][maxn];;
struct group{
int a,b,c,d,p;
}G[maxn];
int A,B,C,D;
VI P;
int main()
{
N = read();
For(i,,N){
G[i].a = read(); G[i].b = read();
G[i].c = read(); G[i].d = read();
Sca(G[i].p);
}
A = read(); B = read(); C = read(); D = read();
Mem(dp,);
For(i,,N){
_For(a,A ,G[i].a){
_For(b,B,G[i].b){
_For(c,C,G[i].c){
_For(d,D,G[i].d){
if(dp[a][b][c][d].num < dp[a - G[i].a][b - G[i].b][c - G[i].c][d - G[i].d].num + G[i].p){
dp[a][b][c][d].num = dp[a - G[i].a][b - G[i].b][c - G[i].c][d - G[i].d].num + G[i].p;
dp[a][b][c][d].c = dp[a - G[i].a][b - G[i].b][c - G[i].c][d - G[i].d].c | (1ULL << i);
}
if(a && dp[a][b][c][d].num < dp[a - ][b][c][d].num){
dp[a][b][c][d] = dp[a - ][b][c][d];
}
if(b && dp[a][b][c][d].num < dp[a][b - ][c][d].num){
dp[a][b][c][d]= dp[a][b - ][c][d];
}
if(c && dp[a][b][c][d].num < dp[a][b][c - ][d].num){
dp[a][b][c][d] = dp[a][b][c - ][d];
}
if(d && dp[a][b][c][d].num < dp[a][b][c][d - ].num){
dp[a][b][c][d]= dp[a][b][c][d - ];
}
}
}
}
}
}
ULL t = dp[A][B][C][D].c;
For(i,,N){
if(t & (1ULL << i)) P.push_back(i);
}
printf("%d\n",P.size());
for(int i = ; i < P.size(); i ++){
printf("%d ",P[i] - );
}
return ;
}
牛客多校第三场 A- PACM Team 背包/记忆路径的更多相关文章
- 牛客多校第三场 A—pacm team (4维背包加路径压缩)
链接:https://www.nowcoder.com/acm/contest/141/A 来源:牛客网 Eddy was a contestant participating , Eddy fail ...
- 牛客多校第三场-A-PACM Team-多维背包的01变种
题目我就不贴了...说不定被查到要GG... 题意就是我们需要在P,A,C,M四个属性的限制下,找到符合条件的最优解... 这样我们就需要按照0/1背包的思路,建立一个五维度数组dp[i][j][k] ...
- 牛客多校第三场 F Planting Trees
牛客多校第三场 F Planting Trees 题意: 求矩阵内最大值减最小值大于k的最大子矩阵的面积 题解: 矩阵压缩的技巧 因为对于我们有用的信息只有这个矩阵内的最大值和最小值 所以我们可以将一 ...
- 牛客多校第三场 G Removing Stones(分治+线段树)
牛客多校第三场 G Removing Stones(分治+线段树) 题意: 给你n个数,问你有多少个长度不小于2的连续子序列,使得其中最大元素不大于所有元素和的一半 题解: 分治+线段树 线段树维护最 ...
- 2018牛客多校第三场 C.Shuffle Cards
题意: 给出一段序列,每次将从第p个数开始的s个数移到最前面.求最终的序列是什么. 题解: Splay翻转模板题.存下板子. #include <bits/stdc++.h> using ...
- Removing Stones(2019年牛客多校第三场G+启发式分治)
目录 题目链接 题意 思路 代码 题目链接 传送门 题意 初始时有\(n\)堆石子,每堆石子的石子个数为\(a_i\),然后进行游戏. 游戏规则为你可以选择任意两堆石子,然后从这两堆中移除一个石子,最 ...
- 2019年牛客多校第三场 F题Planting Trees(单调队列)
题目链接 传送门 题意 给你一个\(n\times n\)的矩形,要你求出一个面积最大的矩形使得这个矩形内的最大值减最小值小于等于\(M\). 思路 单调队列滚动窗口. 比赛的时候我的想法是先枚举长度 ...
- 2019牛客多校第三场 F.Planting Trees
题目链接 题目链接 题解 题面上面很明显的提示了需要严格\(O(n^3)\)的算法. 先考虑一个过不了的做法,枚举右下角的\((x,y)\),然后二分矩形面积,枚举其中一边,则复杂度是\(O(n^3 ...
- 2019牛客多校第三场D BigInteger——基础数论
题意: 用 $A(n)$ 表示第 $n$ 个只由1组成分整数,现给定一个素数 $p$,求满足 $1 \leq i\leq n, 1 \leq j \leq m, A(i^j) \equiv 0(mo ...
随机推荐
- 软件工程M1/M2总结及阅读作业总结
一.软件工程M1/M2总结 写下这篇总结的时候,我们的软件项目尚未完工.虽然尝试申请了延期答辩,但最终未能成功.这意味着,我们的项目能否正常发布已经处于了一个微妙的状态.可能可以,也可能不可以.只能尽 ...
- Week 2 代码审查
我的伙伴是6班的小伙子潘礼鹏,经过几天的相处我觉得真的是说话很有趣的人,性格非常好,我们很划得来. 以下为我对他的代码的审查结果: VS2012与VS2013的兼容性 在这里写一个工具集的问题,不同的 ...
- 探秘Java中的String、StringBuilder以及StringBuffer(转载)
探秘Java中String.StringBuilder以及StringBuffer 相信String这个类是Java中使用得最频繁的类之一,并且又是各大公司面试喜欢问到的地方,今天就来和大家一起学习一 ...
- Ajax进阶 FormData对象
Ajax基础:http://www.cnblogs.com/-beyond/p/7919369.html xhr 2.0及FormData介绍 FormData对象 其实和 XMLHttpReques ...
- PAT 1038 统计同成绩学生
https://pintia.cn/problem-sets/994805260223102976/problems/994805284092887040 本题要求读入N名学生的成绩,将获得某一给定分 ...
- 详解centos6和centos7防火墙的关闭
http://www.jb51.net/article/101576.htm http://www.myhack58.com/Article/48/66/2013/37314.htm http://w ...
- HTML 5 placeHolder
<html> <body> <input type="text" id="idNum" placeholder="pla ...
- node的consoidate的插件统一
使用consolidate.ejs.的这种形式. let express = require('express'); let app = express(); app.set('views','返回的 ...
- Fuck me 忘记改REDO 造成复制用户超级慢
. 一个用户的测试环境, 想着复制用户进行功能和单点性能测试. 但是用户数据量较大,见图 2. 发现在测试环境里面复制一个用户 大概耗时2小时20min的时间, 测试虚拟机的配置: 最开始注意到awr ...
- pandas设置值、更改值
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/5/24 15:03 # @Author : zhang chao # @Fi ...