https://www.nowcoder.com/acm/contest/141#question

一眼背包,用四维dp记录在A,B,C,D条件限制下可以获得的最大知识点,但是题目要求输出路径,在输入中包含0这样的样例,原本的递归寻找路径变的不可行,就需要开五维dp记录在i组条件下ABCD的最大知识点,空间复杂度为36 ^ 5,测试可以通过,但本题有更加优秀的解法,就是在原本四维dp的条件下同时用状压记录已经选择的物品,输出的时候只要输出加入状压的物品即可。

#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
#define For(i, x, y) for(int i=x; i<=y; i++)
#define _For(i, x, y) for(int i=x; i>=y; i--)
#define Mem(f, x) memset(f, x, sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i = 0; i <= N ; i ++) u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
using namespace std;
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
inline int read()
{
int now=;register char c=getchar();
for(;!isdigit(c);c=getchar());
for(;isdigit(c);now=now*+c-'',c=getchar());
return now;
}
int N,M;
struct DP{
ULL c;
int num;
}dp[maxn][maxn][maxn][maxn];;
struct group{
int a,b,c,d,p;
}G[maxn];
int A,B,C,D;
VI P;
int main()
{
N = read();
For(i,,N){
G[i].a = read(); G[i].b = read();
G[i].c = read(); G[i].d = read();
Sca(G[i].p);
}
A = read(); B = read(); C = read(); D = read();
Mem(dp,);
For(i,,N){
_For(a,A ,G[i].a){
_For(b,B,G[i].b){
_For(c,C,G[i].c){
_For(d,D,G[i].d){
if(dp[a][b][c][d].num < dp[a - G[i].a][b - G[i].b][c - G[i].c][d - G[i].d].num + G[i].p){
dp[a][b][c][d].num = dp[a - G[i].a][b - G[i].b][c - G[i].c][d - G[i].d].num + G[i].p;
dp[a][b][c][d].c = dp[a - G[i].a][b - G[i].b][c - G[i].c][d - G[i].d].c | (1ULL << i);
}
if(a && dp[a][b][c][d].num < dp[a - ][b][c][d].num){
dp[a][b][c][d] = dp[a - ][b][c][d];
}
if(b && dp[a][b][c][d].num < dp[a][b - ][c][d].num){
dp[a][b][c][d]= dp[a][b - ][c][d];
}
if(c && dp[a][b][c][d].num < dp[a][b][c - ][d].num){
dp[a][b][c][d] = dp[a][b][c - ][d];
}
if(d && dp[a][b][c][d].num < dp[a][b][c][d - ].num){
dp[a][b][c][d]= dp[a][b][c][d - ];
}
}
}
}
}
}
ULL t = dp[A][B][C][D].c;
For(i,,N){
if(t & (1ULL << i)) P.push_back(i);
}
printf("%d\n",P.size());
for(int i = ; i < P.size(); i ++){
printf("%d ",P[i] - );
}
return ;
}

牛客多校第三场 A- PACM Team 背包/记忆路径的更多相关文章

  1. 牛客多校第三场 A—pacm team (4维背包加路径压缩)

    链接:https://www.nowcoder.com/acm/contest/141/A 来源:牛客网 Eddy was a contestant participating , Eddy fail ...

  2. 牛客多校第三场-A-PACM Team-多维背包的01变种

    题目我就不贴了...说不定被查到要GG... 题意就是我们需要在P,A,C,M四个属性的限制下,找到符合条件的最优解... 这样我们就需要按照0/1背包的思路,建立一个五维度数组dp[i][j][k] ...

  3. 牛客多校第三场 F Planting Trees

    牛客多校第三场 F Planting Trees 题意: 求矩阵内最大值减最小值大于k的最大子矩阵的面积 题解: 矩阵压缩的技巧 因为对于我们有用的信息只有这个矩阵内的最大值和最小值 所以我们可以将一 ...

  4. 牛客多校第三场 G Removing Stones(分治+线段树)

    牛客多校第三场 G Removing Stones(分治+线段树) 题意: 给你n个数,问你有多少个长度不小于2的连续子序列,使得其中最大元素不大于所有元素和的一半 题解: 分治+线段树 线段树维护最 ...

  5. 2018牛客多校第三场 C.Shuffle Cards

    题意: 给出一段序列,每次将从第p个数开始的s个数移到最前面.求最终的序列是什么. 题解: Splay翻转模板题.存下板子. #include <bits/stdc++.h> using ...

  6. Removing Stones(2019年牛客多校第三场G+启发式分治)

    目录 题目链接 题意 思路 代码 题目链接 传送门 题意 初始时有\(n\)堆石子,每堆石子的石子个数为\(a_i\),然后进行游戏. 游戏规则为你可以选择任意两堆石子,然后从这两堆中移除一个石子,最 ...

  7. 2019年牛客多校第三场 F题Planting Trees(单调队列)

    题目链接 传送门 题意 给你一个\(n\times n\)的矩形,要你求出一个面积最大的矩形使得这个矩形内的最大值减最小值小于等于\(M\). 思路 单调队列滚动窗口. 比赛的时候我的想法是先枚举长度 ...

  8. 2019牛客多校第三场 F.Planting Trees

    题目链接 题目链接 题解 题面上面很明显的提示了需要严格\(O(n^3)\)的算法. 先考虑一个过不了的做法,枚举右下角的\((x,y)\),然后二分矩形面积,枚举其中一边,则复杂度是\(O(n^3 ...

  9. 2019牛客多校第三场D BigInteger——基础数论

    题意: 用  $A(n)$ 表示第 $n$ 个只由1组成分整数,现给定一个素数 $p$,求满足 $1 \leq i\leq n, 1 \leq j \leq m, A(i^j) \equiv 0(mo ...

随机推荐

  1. 补充照片:某基同学使用Bing词典

    某基同学使用Bing词典的照片

  2. Scrum Meeting 7

                第七次会议 No_00:工作情况 No_01:任务说明 待完成 已完成 No_10:燃尽图 No_11:照片记录 待更新 No_100:代码/文档签入记录 No_101:出席表 ...

  3. "Linux内核分析"第七周

    可执行程序的装载 张文俊+原创作品转载请注明出处+<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.预 ...

  4. JAVA程序设计 实验一报告

    北京电子科技学院(BESTI) 实     验    报     告 课程:Java程序设计 班级:1351  姓名:李畅宇  学号:20135129 成绩:             指导教师:娄嘉鹏 ...

  5. QT 窗口置顶功能

    Qt中,保持窗口置顶的设置为: Qt::WindowFlags m_flags = windowFlags(); setWindowFlags(m_flags | Qt::WindowStaysOnT ...

  6. 关于HashMap和Hashtable的区别

    Hashtable的应用非常广泛,HashMap是新框架中用来代替Hashtable的类,也就是说建议使用HashMap,不要使用Hashtable.可能你觉得Hashtable很好用,为什么不用呢? ...

  7. Activiti reassign task to another user

    //早先胡乱尝试的其他方法,可能对于以后深入学习Activiti有些用处. //taskService.delegateTask(taskId, receiveUserId); //taskServi ...

  8. Trouble shooting(问题解决):centos 7 gnome show someting has gone wrong.

    centos 7 升级 内核 3.10,startx启动不了了.进界面也是oh,no!someting has gone wrong . 参见帖子:http://bbs.csdn.net/topics ...

  9. modern effective C++ -- Deducint Types

    1. 理解模板类型推导 1. expr是T& template<typename T> void f(T & param); // 我们声明如下变量 int x = 27; ...

  10. 软件工程_7th weeks

    内聚和耦合(学习笔记) 一.内聚 内聚是一个模块内部各成分之间相关联程度的度量.把内聚按紧密程度从低到高排列次序为: 1.偶然内聚:指一个模块内各成分为完成一组功能而组合在一起,它们相互之间即使有关系 ...