题目描述

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)

输入

输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i + 2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。

输出

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

这道题是最大权闭合子图入门题,源点连向用户群,容量为收益;中转站连向汇点,容量为成本。每个用户群连向对应中转站,容量为INF。求网络最小割(最大流),用总收益减掉最小割即可。

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
int head[60001];
int to[400001];
int val[400001];
int next[400001];
int tot=1;
int n,m;
int x;
int a,b,c;
int S,T;
int d[60001];
int q[60001];
int INF=2147483647;
int ans=0;
int sum=0;
void add(int x,int y,int z)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=z;
tot++;
next[tot]=head[y];
head[y]=tot;
to[tot]=x;
val[tot]=0;
}
int dfs(int x,int maxflow)
{
if(x==T)
{
return maxflow;
}
int used=0;
int nowflow;
for(int i=head[x];i;i=next[i])
{
if(val[i]!=0&&d[to[i]]==d[x]+1)
{
nowflow=dfs(to[i],min(maxflow-used,val[i]));
val[i]-=nowflow;
val[i^1]+=nowflow;
used+=nowflow;
if(nowflow==maxflow)
{
return maxflow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
bool bfs(int S,int T)
{
memset(d,-1,sizeof(d));
memset(q,0,sizeof(q));
d[S]=0;
int l=0;
int r=0;
q[r++]=S;
while(l<r)
{
int now=q[l];
for(int i=head[now];i;i=next[i])
{
if(d[to[i]]==-1&&val[i]!=0)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
l++;
}
if(d[T]!=-1)
{
return true;
}
return false;
}
void dinic()
{
while(bfs(S,T)==true)
{
ans+=dfs(S,INF);
}
}
int main()
{
scanf("%d%d",&n,&m);
S=n+m+1;
T=n+m+2;
for(int i=1;i<=n;i++)
{
scanf("%d",&x);
add(i+m,T,x);
}
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c);
sum+=c;
add(S,i,c);
add(i,a+m,INF);
add(i,b+m,INF);
}
dinic();
printf("%d",sum-ans);
}

BZOJ1497[NOI2006]最大获利——最大权闭合子图的更多相关文章

  1. bzoj1497 [NOI2006]最大获利 最大权闭合子图

    链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路 最大权闭合子图的裸题 一开始知道是这个最大权闭合子图(虽然我不知道名字),但是我 ...

  2. P4174 [NOI2006]最大获利 (最大权闭合子图)

    P4174 [NOI2006]最大获利 (最大权闭合子图) 题目链接 题意 建\(i\)站台需要\(p_i\)的花费,当\(A_i,B_i\)都建立时获得\(C_i\)的利润,求最大的利润 思路 最大 ...

  3. 【BZOJ】1497: [NOI2006]最大获利 最大权闭合子图或最小割

    [题意]给定n个点,点权为pi.m条边,边权为ci.选择一个点集的收益是在[点集中的边权和]-[点集点权和],求最大获利.n<=5000,m<=50000,0<=ci,pi<= ...

  4. COGS28 [NOI2006] 最大获利[最大权闭合子图]

    [NOI2006] 最大获利 ★★★☆   输入文件:profit.in   输出文件:profit.out   简单对比时间限制:2 s   内存限制:512 MB [问题描述] 新的技术正冲击着手 ...

  5. bzoj1497 最大获利(最大权闭合子图)

    题目链接 思路 对于每个中转站向\(T\)连一条权值为建这个中转站代价的边.割掉这条边表示会建这个中转站. 对于每个人向他的两个中转站连一条权值为\(INF\)的边.然后从\(S\)向这个人连一条权值 ...

  6. BZOJ 1497 最大获利(最大权闭合子图)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路:由题意可以得知,每个顾客都依赖2个中转站,那么让中转站连有向边到汇点,流量为它的建设费用 ...

  7. bzoj1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 题目:传送门 题解: %%%关于最大权闭合子图很好的入门题 简单说一下什么叫最大权闭合子图吧...最简单的解释就是正权边连源点,负权边连汇点(注意把边权改为正数 ...

  8. 【最大权闭合子图】BZOJ1497[NOI2006]-最大获利

    [题目大意] 建立第i个通讯中转站需要的成本为Pi(1≤i≤N).另外公司调查得出了所有期望中的用户群,一共M个.关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进 ...

  9. 【最大权闭合子图 最小割】bzoj1497: [NOI2006]最大获利

    最大权闭合子图的模型:今天才发现dinic板子是一直挂的…… Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在 ...

随机推荐

  1. Android学习之基础知识四-Activity活动3讲(Intent的使用)

    主活动名称FirstActivity.java改为了MenuTest.java 一.什么是Intent: 1.Intent是Android程序中各组件之间进行交互的重要方式,不仅可以指明当前组件想要进 ...

  2. <转>cookie和session的区别

    看到一篇讲cookie和session的文章,觉得蛮不错的,转载分享下... 原地址:http://www.lai18.com/content/407204.html?from=cancel cook ...

  3. leetcode56:Merge Intervals

    大都是自定义了 Interval的比较方法. 突发奇想 int [] arr=new int[intervals.Count*2]; for(int i=0;i<intervals.Count; ...

  4. 有哪些操作会使用到TempDB;如果TempDB异常变大,可能的原因是什么,该如何处理(转载)

    有哪些操作会使用到TempDB:如果TempDB异常变大,可能的原因是什么,该如何处理:tempdb的用途: 存储专用和全局临时变量,不考虑数据库上下文: 与Order by 子句,游标,Group ...

  5. Luogu3350 ZJOI2016 旅行者 最短路、分治

    传送门 题意:给出一个$N \times M$的网格图,边有边权,$Q$组询问,每组询问$(x_1,y_1)$到$(x_2,y_2)$的最短路.$N \times M \leq 2 \times 10 ...

  6. 面试4——java进程和线程相关知识

    1.线程和进程的概念.并行和并发的概念

  7. J-query extend()方法

    1.如果没有冲突参数会弥在后面. 2.参数如果和前面的参数存在相同的名称,那么后面的会覆盖前面的参数值.

  8. 2018年计划小里程碑(6月)PMI-ACP 敏捷

    年初定的计划之一,考证... 7A,意料之外,也是意料之中.历时两个月多,2018.3.31号决定报名,顶着压报了ACP+ACP实战+PMP,考虑了下敏捷是未来项目管理的趋势,大部分公司正在向敏捷转型 ...

  9. Authorize的Forms认证

    页面请求步骤: 1.登录地址: http://localhost:4441/SysLogin/AdminLogin 2.登陆成功地址:http://localhost:4441/Frame/MainF ...

  10. Unity Jobsystem 详解实体组件系统ECS

    原文摘选自Unity Jobsystem 详解实体组件系统ECS 简介 随着ECS的加入,Unity基本上改变了软件开发方面的大部分方法.ECS的加入预示着OOP方法的结束.随着实体组件系统ECS的到 ...