BZOJ4771七彩树——可持久化线段树+set+树链的并+LCA
输入
输出
样例输入
5 8
1 3 3 2 2
1 1 3 3
1 0
0 0
3 0
1 3
2 1
2 0
6 2
4 1
样例输出
2
3
1
1
2
1
1
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int T;
int n,m;
int x,y;
int cnt;
int tot;
int num;
int ans;
int s[100010];
int t[100010];
int a[100010];
int d[100010];
int v[100010];
int to[100010];
int que[100010];
int ls[5000010];
int rs[5000010];
int next[100010];
int head[100010];
int sum[5000010];
int root[100010];
int f[100010][19];
set<int>q[100010];
set<int>::iterator it;
bool cmp(int x,int y)
{
return d[x]<d[y];
}
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
int lca(int x,int y)
{
if(d[x]<d[y])
{
swap(x,y);
}
int dep=d[x]-d[y];
for(int i=0;i<=18;i++)
{
if((dep&(1<<i))!=0)
{
x=f[x][i];
}
}
if(x==y)
{
return x;
}
for(int i=18;i>=0;i--)
{
if(f[x][i]!=f[y][i])
{
x=f[x][i];
y=f[y][i];
}
}
return f[x][0];
}
void dfs(int x)
{
s[x]=++cnt;
que[cnt]=x;
for(int i=1;i<=18;i++)
{
f[x][i]=f[f[x][i-1]][i-1];
}
for(int i=head[x];i;i=next[i])
{
d[to[i]]=d[x]+1;
dfs(to[i]);
}
t[x]=cnt;
}
int updata(int pre,int l,int r,int k,int v)
{
int rt=++cnt;
if(l==r)
{
sum[rt]=sum[pre]+v;
return rt;
}
ls[rt]=ls[pre];
rs[rt]=rs[pre];
sum[rt]=sum[pre]+v;
int mid=(l+r)>>1;
if(k<=mid)
{
ls[rt]=updata(ls[pre],l,mid,k,v);
}
else
{
rs[rt]=updata(rs[pre],mid+1,r,k,v);
}
return rt;
}
int query(int rt,int l,int r,int L,int R)
{
if(!rt||(L<=l&&r<=R))
{
return sum[rt];
}
int mid=(l+r)>>1;
if(L>mid)
{
return query(rs[rt],mid+1,r,L,R);
}
else if(R<=mid)
{
return query(ls[rt],l,mid,L,R);
}
else
{
return query(ls[rt],l,mid,L,R)+query(rs[rt],mid+1,r,L,R);
}
}
int main()
{
scanf("%d",&T);
while(T--)
{
tot=0;
ans=0;
cnt=0;
num=0;
memset(head,0,sizeof(head));
memset(root,0,sizeof(root));
memset(f,0,sizeof(f));
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&v[i]);
a[i]=i;
q[i].clear();
}
for(int i=2;i<=n;i++)
{
scanf("%d",&f[i][0]);
add(f[i][0],i);
}
d[1]=1;
dfs(1);
sort(a+1,a+1+n,cmp);
for(int i=1;i<=n;i++)
{
x=y=0;
it=q[v[a[i]]].lower_bound(s[a[i]]);
root[d[a[i]]]=updata(root[d[a[i-1]]],1,n,s[a[i]],1);
if(it!=q[v[a[i]]].end())
{
y=que[(*it)];
root[d[a[i]]]=updata(root[d[a[i]]],1,n,s[lca(a[i],y)],-1);
}
if(it!=q[v[a[i]]].begin())
{
it--;
x=que[(*it)];
root[d[a[i]]]=updata(root[d[a[i]]],1,n,s[lca(a[i],x)],-1);
}
if(x&&y)
{
root[d[a[i]]]=updata(root[d[a[i]]],1,n,s[lca(x,y)],1);
}
q[v[a[i]]].insert(s[a[i]]);
}
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
x^=ans;
y^=ans;
ans=query(root[min(d[x]+y,d[a[n]])],1,n,s[x],t[x]);
printf("%d\n",ans);
}
}
}
BZOJ4771七彩树——可持久化线段树+set+树链的并+LCA的更多相关文章
- [BZOJ 4771]七彩树(可持久化线段树+树上差分)
[BZOJ 4771]七彩树(可持久化线段树+树上差分) 题面 给定一棵n个点的有根树,编号依次为1到n,其中1号点是根节点.每个节点都被染上了某一种颜色,其中第i个节点的颜色为c[i].如果c[i] ...
- 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex
题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...
- BZOJ.4771.七彩树(可持久化线段树)
BZOJ 考虑没有深度限制,对整棵子树询问怎么做. 对于同种颜色中DFS序相邻的两个点\(u,v\),在\(dfn[u],dfn[v]\)处分别\(+1\),\(dfn[LCA(u,v)]\)处\(- ...
- BZOJ 4771: 七彩树 可持久化线段树+树链的并
这个思路挺有意思的 ~ 利用树链的并来保证每个颜色只贡献一次,然后用可持久化线段树维护 code: #include <set> #include <cstdio> #incl ...
- 归并树 划分树 可持久化线段树(主席树) 入门题 hdu 2665
如果题目给出1e5的数据范围,,以前只会用n*log(n)的方法去想 今天学了一下两三种n*n*log(n)的数据结构 他们就是大名鼎鼎的 归并树 划分树 主席树,,,, 首先来说两个问题,,区间第k ...
- 主席树[可持久化线段树](hdu 2665 Kth number、SP 10628 Count on a tree、ZOJ 2112 Dynamic Rankings、codeforces 813E Army Creation、codeforces960F:Pathwalks )
在今天三黑(恶意评分刷上去的那种)两紫的智推中,突然出现了P3834 [模板]可持久化线段树 1(主席树)就突然有了不详的预感2333 果然...然后我gg了!被大佬虐了! hdu 2665 Kth ...
- BZOJ 3483 SGU505 Prefixes and suffixes(字典树+可持久化线段树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3483 [题目大意] 给出一些串,同时给出m对前缀后缀,询问有多少串满足给出的前缀后缀模 ...
- BZOJ 3439 Kpm的MCpassword Trie树+可持久化线段树
题目大意:给定n个字符串,对于每一个字符串求以这个字符串为后缀的字符串中第k小的编号 首先将字符串反转 那么就变成了对于每一个字符串求以这个字符串为前缀的字符串中第k小的编号 然后考虑对字符串排序 那 ...
- [TS-A1505] [清橙2013中国国家集训队第二次作业] 树 [可持久化线段树,求树上路径第k大]
按Dfs序逐个插入点,建立可持久化线段树,每次查询即可,具体详见代码. 不知道为什么,代码慢的要死,, #include <iostream> #include <algorithm ...
随机推荐
- UI自动化测试模型
所谓的自动化测试模型,可以理解为自动化测试框架+工具设计的一种思想产物. 先说说库.框架.工具之间的区别: 库:英文名Library,由代码集成的一个产品,供用户调用.面向对象的库叫做类库,面向过程的 ...
- Omi框架学习之旅 - 组件通讯(data通讯) 及原理说明
接着上一篇的data-*通讯,这篇写data通讯. data通讯主要为了复杂的数据通讯. 老规矩:先上demo代码, 然后提出问题, 之后解答问题, 最后源码说明. class Hello exten ...
- NB-IoT协议及其PSM
物联网技术发展趋势是LPWAN,其中尤其以NB-IoT和eMTC最为代表.NB-IoT和eMTC各有优劣,使用场景互有不同. 低功耗可以说是物联网技术的核心,本着关注低功耗的方向,适当了解NB IoT ...
- DNS 协议
DNS 入门 域名系统(英文:Domain Name System,缩写:DNS)是互联网的一项服务.它作为将域名和 IP 地址相互映射的一个分布式数据库,能够使人更方便地访问互联网.DNS 使用 T ...
- js求数组的最大值--奇技淫巧和笨方法
写这篇文章的原因 我目前做的项目很少用到算法,于是这方面的东西自然就有点儿生疏.最近的一次编码中遇到了从数组中获取最大值的需求,当时我不自觉的想到了js的sort()函数,现在想来真是有些“罪过”,当 ...
- fastjson tojson部分规则
fastjson 作为java 目前最快速,最轻便 json对象,与json 字符串转换 第三方包,阿里巴巴提供. 对象转json规则 转json字符串 列 JSONObject.toJSON(ne ...
- [朴孝敏][Ooh La La]
歌词来源:http://music.163.com/#/song?id=484058960 作曲 : Damon Sharpe/Jimmy Burney/Adam Kapit [作曲 : Damon ...
- html绝对路径,相对路径
.com/eat.php中引用.com/includes/headrt.php的话写includes/header.php .com/service/eat.php中引用.com/includes/h ...
- Docker环境编译时的错误记录
1)报错一docker-compose -f compose/app.yaml -f compose/backend.yaml -f compose/proxy.yaml build peatio b ...
- PHP从入门到精通(三)
PHP数组的分类 按照下标的不同,PHP数组分为关联数组与索引数组: 索引数组:下标从0开始,依次增长:关联数组: 下标为字符串格式,每个下标字符串与数组的值一一关联对应.(有点像对象的键值对) 关于 ...