如果没有长度为偶数的限制,新建一个点向所有奇点连边,跑欧拉回路即可,显然此时一定存在欧拉回路,因为所有点度数都为偶数。

  考虑长度为偶数的限制,将每个点拆成两个点放进一个二分图里,那么每条原图中的边在二分图中会对应两条边,一条长度为偶数的路径在二分图中显然是由某部分出发再走回这部分。我们需要让每条原图中的边恰在二分图中出现一次,且保证所有点度数为偶数,这样仍然跑个欧拉回路就完了。

  对原图任意取一棵生成树。让非树边任意连,然后通过树边调整度数以达到目的。注意到新建点并连边后,原图中所有点度数都为偶数,而原图中的点在二分图中的对应两点度数之和,就是该点在原图中的度数,也即偶数。也就是说任意点的对应两点度数奇偶性相同,调整一条与其相连的边会同时改变这两点的度数奇偶性。于是考虑怎么调整树边,自底向上,如果某点的儿子当前不满足条件,就改变这条边的连接方式,显然这样儿子的度数就合法了。不断调整上去,最后只剩下根,不过事实上根此时已经合法,因为边的总数是偶数,二分图某边的点度数之和也是偶数,不可能只有根的度数是奇数。

  悲惨地发现darkbzoj没有spj,那就精神AC吧(感觉浑身是bug)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
#define ll long long
#define N 500010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,p[N],degree[N],dir[N],t=-1;
map<int,int> id[N];
bool flag[N],vis[N];
struct data{int to,nxt;
}edge[N<<1];
void addedge(int x,int y){t++;degree[y]++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
namespace bigraph
{
int p[N],cur[N],degree[N],stk[N<<1],m=0,top=0,cnt=0,t=-1;
bool flag[N];
struct data{int to,nxt;}edge[N<<1];
void addedge(int x,int y)
{
t++;degree[y]++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;
t++;degree[x]++;edge[t].to=x,edge[t].nxt=p[y],p[y]=t;
m++;
}
void find(int k)
{
for (int i=cur[k];~i;i=edge[i].nxt)
if (!flag[i>>1])
{
flag[i>>1]=1;cnt++;
cur[k]=edge[i].nxt;
find(edge[i].to);
if (cnt==m) break;
}
stk[++top]=k;
}
void print()
{
reverse(stk+1,stk+top+1);//for (int i=1;i<=top;i++) cout<<stk[i]<<' ';cout<<endl;
for (int i=1;i<=top;i++)
{
if (i==top) break;
int x=++i,y;
for (int j=i+1;j<=top;j++)
if (stk[j]==0) {y=j-1;break;}
printf("%d %d %d\n",stk[x],stk[y],y-x);
for (int j=x;j<y;j++)
printf("%d ",id[(stk[j]-1)%n+1][(stk[j+1]-1)%n+1]);printf("\n");
i=y;
}
}
}
void dfs(int k)
{
vis[k]=1;
for (int i=p[k];~i;i=edge[i].nxt)
if (!vis[edge[i].to])
{
dfs(edge[i].to);
flag[i>>1]=1;
}
}
void getdir(int k,int from)
{
for (int i=p[k];~i;i=edge[i].nxt)
if (flag[i>>1]&&edge[i].to!=from)
{
getdir(edge[i].to,k);
if (bigraph::degree[edge[i].to]&1) dir[i>>1]=i&1^1;
else dir[i>>1]=i&1,bigraph::degree[k]^=1;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3724.in","r",stdin);
freopen("bzoj3724.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();memset(p,255,sizeof(p));
for (int i=1;i<=m;i++)
{
int x=read(),y=read();
addedge(x,y),addedge(y,x);
id[x][y]=id[y][x]=i;
}
dfs(1);
for (int i=0;i<t;i+=2) if (!flag[i>>1]) bigraph::degree[edge[i^1].to]^=1;
for (int i=1;i<=n;i++) if (degree[i]&1) bigraph::degree[i]^=1;
getdir(1,1);
memset(bigraph::p,255,sizeof(bigraph::p));
for (int i=0;i<t;i+=2) bigraph::addedge(edge[i^1].to+dir[i>>1]*n,edge[i].to+(dir[i>>1]^1)*n);
for (int i=1;i<=n;i++) if (degree[i]&1) bigraph::addedge(0,i);
memcpy(bigraph::cur,bigraph::p,sizeof(bigraph::cur));
bigraph::find(0);
bigraph::print();
return 0;
}

  

BZOJ3724 PA2014Final Krolestwo(欧拉回路+构造)的更多相关文章

  1. BZOJ3724PA2014Final Krolestwo——欧拉回路+构造

    题目描述 你有一个无向连通图,边的总数为偶数.设图中有k个奇点(度数为奇数的点),你需要把它们配成k/2个点对(显然k被2整除).对于每个点对(u,v),你需要用一条长度为偶数(假设每条边长度为1)的 ...

  2. hdu 4850 字符串构造---欧拉回路构造序列 递归+非递归实现

    http://acm.hdu.edu.cn/showproblem.php? pid=4850 题意:构造长度为n的字符序列.使得>=4的子串仅仅出现一次 事实上最长仅仅能构造出来26^4+4- ...

  3. 【刷题】BZOJ 3724 PA2014Final Krolestwo

    Description 你有一个无向连通图,边的总数为偶数. 设图中有k个奇点(度数为奇数的点),你需要把它们配成k/2个点对(显然k被2整除).对于每个点对(u,v),你需要用一条长度为偶数(假设每 ...

  4. CF36E Two Paths (欧拉回路+构造)

    题面传送门 题目大意:给你一张可能有重边的不保证联通的无向图,现在要在这个图上找出两条路径,恰好能覆盖所有边一次,根据边的编号输出方案,无解输出-1 一道很不错的欧拉路径变形题 首先要知道关于欧拉路径 ...

  5. @bzoj - 3724@ PA2014Final Krolestwo

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 你有一个无向连通图,边的总数为偶数. 设图中有k个奇点(度数为奇 ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. NOI前训练日记

    向别人学习一波,记点流水帐.17.5.29开坑. 5.29 早晨看了道据说是树状数组优化DP的题(hdu5542),然后脑补了一个复杂度500^3的meet in the middle.然后死T... ...

  8. IOI 2020 集训队作业胡扯

    首先安慰自己:做的没集训队快很正常-- 很正常-- 做不完也很正常-- 很正常-- 全都不会做也很正常-- 很正常-- 表格 试题一 完成情况 试题二 完成情况 试题三 完成情况 cf549E cf6 ...

  9. 2015多校.MZL's endless loop(欧拉回路的机智应用 || 构造)

    MZL's endless loop Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Oth ...

随机推荐

  1. ubuntu14.04终端分屏terminator的安装使用与配置

    安装 terminator 软件 . sudo apt-get install terminator 这个终端程序可以分屏,常用操作快捷键如下: Ctrl+Shift+O Split terminal ...

  2. Luogu P4427 [BJOI2018]求和

    这是一道巨狗题,我已无力吐槽为什么我怎么写都不过 我们对于这种无修改的边权题目有一个经典的树上差分套路: \(ans=sum_x+sum_y-2\cdot sum_{LCA(x,y)}\) 这里的\( ...

  3. Spring Cloud 入门教程(五): Ribbon实现客户端的负载均衡

    接上节,假如我们的Hello world服务的访问量剧增,用一个服务已经无法承载, 我们可以把Hello World服务做成一个集群. 很简单,我们只需要复制Hello world服务,同时将原来的端 ...

  4. easyui datagrid remoteSort的实现 Controllers编写动态的Lambda表达式 IQueryable OrderBy扩展

    EF 结合easy-ui datagrid 实现页面端排序 EF动态编写排序Lambda表达式 1.前端页面 var mainListHeight = $(window).height() - 20; ...

  5. 小程序encryptedData

    准备知识: Base64编解码 AES算法.填充模式.偏移向量 session_key会话密钥,以及怎么存储和获取 以上3点对于理解解密流程非常重要. 根据官方文档,我梳理了大致的解密流程,如下: 小 ...

  6. JS 实现计算一段文字中的字节数,字母数,数字数,行数,汉字数。

    看到了匹配,第一个想到了用正则表达式,哈哈,果然很方便.不过正则表达式高深莫测!我还没有研究明白啊..目前学了点皮毛.代码如下: <!DOCTYPE html PUBLIC "-//W ...

  7. visual studio2013安装及测试

    visual studio2013自同学处拷贝安装至本机,由于安装包较大采用了双重压缩,解压时费了点时间,安装过程更是用了一个小时之久. 1.安装环境: 本机配置:Windows8,Intel(R)C ...

  8. maven私服 Nexus2.x.x私服安装配置

    一.Nexus的下载和安装 1.下载nexus ,下载地址:https://www.sonatype.com/download-oss-sonatype  2.打开目录nexus-2.x.x-xx-b ...

  9. HDU 2053 Switch Game

    http://acm.hdu.edu.cn/showproblem.php?pid=2053 Problem Description There are many lamps in a line. A ...

  10. Eclipse: Difference between clean, build and publish

    https://stackoverflow.com/questions/5656989/eclipse-difference-between-clean-build-and-publish http: ...