题面

洛谷

题解

等下发链接

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 100100
#define inf 1ll<<60
#define lson (now<<1)
#define rson (now<<1|1)
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int dfn[MAX],size[MAX],hson[MAX],top[MAX],bot[MAX],fa[MAX],ln[MAX],tim;
int V[MAX],n,m;
void dfs1(int u,int ff)
{
fa[u]=ff;size[u]=1;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
dfs1(v,u);size[u]+=size[v];
if(size[v]>size[hson[u]])hson[u]=v;
}
}
void dfs2(int u,int tp)
{
top[u]=tp;dfn[u]=++tim;ln[tim]=u;
if(hson[u])dfs2(hson[u],tp),bot[u]=bot[hson[u]];
else bot[u]=u;
for(int i=h[u];i;i=e[i].next)
if(e[i].v!=fa[u]&&e[i].v!=hson[u])
dfs2(e[i].v,e[i].v);
}
ll f[MAX][2];
void dp(int u,int ff)
{
f[u][1]=V[u];
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
dp(v,u);
f[u][0]+=max(f[v][0],f[v][1]);
f[u][1]+=f[v][0];
}
}
struct Matrix{ll s[2][2];}t[MAX<<2],tmp[MAX];
Matrix operator*(Matrix a,Matrix b)
{
Matrix ret;
ret.s[0][0]=max(a.s[0][0]+b.s[0][0],a.s[0][1]+b.s[1][0]);
ret.s[0][1]=max(a.s[0][0]+b.s[0][1],a.s[0][1]+b.s[1][1]);
ret.s[1][0]=max(a.s[1][0]+b.s[0][0],a.s[1][1]+b.s[1][0]);
ret.s[1][1]=max(a.s[1][0]+b.s[0][1],a.s[1][1]+b.s[1][1]);
return ret;
}
void Build(int now,int l,int r)
{
if(l==r)
{
int u=ln[l];int g0=0,g1=V[u];
for(int i=h[u];i;i=e[i].next)
if(e[i].v!=fa[u]&&e[i].v!=hson[u])
g0+=max(f[e[i].v][0],f[e[i].v][1]),g1+=f[e[i].v][0];
tmp[l]=t[now]=(Matrix){g0,g0,g1,-inf};
return;
}
int mid=(l+r)>>1;
Build(lson,l,mid);Build(rson,mid+1,r);
t[now]=t[lson]*t[rson];
}
void Modify(int now,int l,int r,int p)
{
if(l==r){t[now]=tmp[l];return;}
int mid=(l+r)>>1;
if(p<=mid)Modify(lson,l,mid,p);
else Modify(rson,mid+1,r,p);
t[now]=t[lson]*t[rson];
}
Matrix Query(int now,int l,int r,int L,int R)
{
if(L==l&&r==R)return t[now];
int mid=(l+r)>>1;
if(R<=mid)return Query(lson,l,mid,L,R);
if(L>mid)return Query(rson,mid+1,r,L,R);
return Query(lson,l,mid,L,mid)*Query(rson,mid+1,r,mid+1,R);
}
Matrix GetMat(int x){return Query(1,1,n,dfn[top[x]],dfn[bot[x]]);}
void Modify(int u,int w)
{
tmp[dfn[u]].s[1][0]+=w-V[u],V[u]=w;
while(u)
{
Matrix a=GetMat(top[u]);Modify(1,1,n,dfn[u]);
Matrix b=GetMat(top[u]);
u=fa[top[u]];if(!u)break;
tmp[dfn[u]].s[0][1]=(tmp[dfn[u]].s[0][0]+=max(b.s[0][0],b.s[1][0])-max(a.s[0][0],a.s[1][0]));
tmp[dfn[u]].s[1][0]+=b.s[0][0]-a.s[0][0];
}
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;++i)V[i]=read();
for(int i=1;i<n;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
dfs1(1,0);dfs2(1,1);dp(1,0);Build(1,1,n);
while(m--)
{
int u=read(),w=read();
Modify(u,w);Matrix ans=GetMat(1);
printf("%lld\n",max(ans.s[0][0],ans.s[1][0]));
}
return 0;
}

【Luogu4719】动态dp的更多相关文章

  1. [复习]动态dp

    [复习]动态dp 你还是可以认为我原来写的动态dp就是在扯蛋. [Luogu4719][模板]动态dp 首先作为一个\(dp\)题,我们显然可以每次修改之后都进行暴力\(dp\),设\(f[i][0/ ...

  2. 动态DP之全局平衡二叉树

    目录 前置知识 全局平衡二叉树 大致介绍 建图过程 修改过程 询问过程 时间复杂度的证明 板题 前置知识 在学习如何使用全局平衡二叉树之前,你首先要知道如何使用树链剖分解决动态DP问题.这里仅做一个简 ...

  3. Luogu P4643 【模板】动态dp

    题目链接 Luogu P4643 题解 猫锟在WC2018讲的黑科技--动态DP,就是一个画风正常的DP问题再加上一个动态修改操作,就像这道题一样.(这道题也是PPT中的例题) 动态DP的一个套路是把 ...

  4. 动态dp学习笔记

    我们经常会遇到一些问题,是一些dp的模型,但是加上了什么待修改强制在线之类的,十分毒瘤,如果能有一个模式化的东西解决这类问题就会非常好. 给定一棵n个点的树,点带点权. 有m次操作,每次操作给定x,y ...

  5. 洛谷P4719 动态dp

    动态DP其实挺简单一个东西. 把DP值的定义改成去掉重儿子之后的DP值. 重链上的答案就用线段树/lct维护,维护子段/矩阵都可以.其实本质上差不多... 修改的时候在log个线段树上修改.轻儿子所在 ...

  6. 动态 DP 学习笔记

    不得不承认,去年提高组 D2T3 对动态 DP 起到了良好的普及效果. 动态 DP 主要用于解决一类问题.这类问题一般原本都是较为简单的树上 DP 问题,但是被套上了丧心病狂的修改点权的操作.举个例子 ...

  7. 动态dp初探

    动态dp初探 动态区间最大子段和问题 给出长度为\(n\)的序列和\(m\)次操作,每次修改一个元素的值或查询区间的最大字段和(SP1714 GSS3). 设\(f[i]\)为以下标\(i\)结尾的最 ...

  8. [总结] 动态DP学习笔记

    学习了一下动态DP 问题的来源: 给定一棵 \(n\) 个节点的树,点有点权,有 \(m\) 次修改单点点权的操作,回答每次操作之后的最大带权独立集大小. 首先一个显然的 \(O(nm)\) 的做法就 ...

  9. UOJ268 [清华集训2016] 数据交互 【动态DP】【堆】【树链剖分】【线段树】

    题目分析: 不难发现可以用动态DP做. 题目相当于是要我求一条路径,所有与路径有交的链的代价加入进去,要求代价最大. 我们把链的代价分成两个部分:一部分将代价加入$LCA$之中,用$g$数组保存:另一 ...

  10. 【BZOJ4911】[SDOI2017]切树游戏(动态dp,FWT)

    [BZOJ4911][SDOI2017]切树游戏(动态dp,FWT) 题面 BZOJ 洛谷 LOJ 题解 首先考虑如何暴力\(dp\),设\(f[i][S]\)表示当前以\(i\)节点为根节点,联通子 ...

随机推荐

  1. linux svn代码回滚命令

    取消对代码的修改分为两种情况: 第一种情况:改动没有被提交(commit). 这种情况下,使用svn revert就能取消之前的修改. svn revert用法如下: # svn revert [-R ...

  2. 【译】高级指南-深入JSX

    title: 高级指南-深入JSX date: 2017-4-5 17:13:09 --- 深入JSX 从根本上来讲,JSX 仅仅是提供 React.createElement(component, ...

  3. sql 某字段存储另一个表的多个id值并以逗号分隔,现根据id去中文并拼接同样以逗号分隔

    首先介绍用到的两个函数 charindex(要查找的表达式1,表达式2),返回值为表达式1在表达式2中的下标,未找到则返回0.(sql的下标是从1开始的),例如 select charindex('s ...

  4. Dubbo原理和源码解析之服务暴露

    github新增仓库 "dubbo-read"(点此查看),集合所有<Dubbo原理和源码解析>系列文章,后续将继续补充该系列,同时将针对Dubbo所做的功能扩展也进行 ...

  5. C_数据结构_循环队列

    # include <stdio.h> # include <malloc.h> typedef struct Queue { int * pBase; int front; ...

  6. A11-java学习-二维数组-面向对象概念-类的编写-测试类的编写-创建对象-使用对象-递归

    二维数组的内存结构和使用 引用类型的内存结构 栈区.堆区.方法区.数据栈等内存分析和介绍 面向对象.面向过程区别和发展 类型的定义 引用类型.值类型 预定义类型和自定义类型 类型与对象(实例) 对象的 ...

  7. maven上传本地jar包到私服

    场景 1. 本地jar包上传到私服 思路: 1. maven的settting.xml配置私服的帐号密码 2. pom.xml配置上传的地址 3. 执行 mvn deploy 部署jar包到私服 步骤 ...

  8. Integrating Jenkins and Apache Tomcat for Continuous Deployment

    Installation via Maven WAR Overlay - Jenkins - Jenkins Wikihttps://wiki.jenkins.io/display/JENKINS/I ...

  9. Ehcache Monitor使用一例

    场景介绍:系统集成Shiro,使用Ehcache保存用户登录限制次数,常有用户密码被锁,影响工作效率. 在不考虑集成SSO,LDAP,也不引入身份校验,邮件,短信等解锁特性下.使用Ehcache Mo ...

  10. HTML5 Base64_encoding_and_decoding

    https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding In JavaSc ...