小D的Lemon

题意

已知

\[g(x)=\left\{\begin{matrix}
1&,x=1\\
\sum_{i=1}^qk_i&,otherwise
\end{matrix}\right.
\]

\[\prod_{i=1}^n\prod_{j=1}^mg(\gcd(i,j))
\]

说明

多组数据,\(T\le 1000,n,m\le 250000\)


式子太久没推都推不好了...

\[\begin{aligned}
\prod_{i=1}^n\prod_{j=1}^m g(\gcd(i,j))=&\prod_{d=1}^ng(d)^{\sum\limits_{i=1}^n\sum\limits_{j=1}^m[\gcd(i,j)=d]}\\
=&\prod_{d=1}^{\min(n,m)}g(d)^{\sum\limits_{k=1}^{\min(\lfloor\frac{n}{d}\rfloor,\rfloor\frac{m}{d}\rfloor)}\mu(k)\lfloor\frac{n}{dk}\rfloor\lfloor\frac{m}{dk}\rfloor}\\
=&\prod_{T=1}^{\min(n,m)}(\prod_{d|T}g(d)^{\mu(\frac{T}{d})})^{\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor}
\end{aligned}
\]

把括号里面的预处理出来就可以了

复杂度\(O(n\sqrt n+T\log n\sqrt n)\)或者\(O(n\ln n+T\log n\sqrt n)\)


Code:

#include <cstdio>
const int N=250000;
const int mod=1e9+7;
int min(int x,int y){return x<y?x:y;}
inline int add(int x,int y){return x+y>=mod?x+y-mod:x+y;}
#define mul(x,y) (1ll*(x)*(y)%mod)
int qp(int d,int k){int f=1;while(k){if(k&1)f=mul(f,d);d=mul(d,d),k>>=1;}return f;}
int g[N+10],mu[N+10],ispri[N+10],pri[N+10],yuu[N+10],yuuinv[N+10],cnt,inv[21];
int cal(int x,int y)
{
if(y==1) return x;
if(y==0) return 1;
return inv[x];
}
void init()
{
g[1]=mu[1]=1;
for(int i=2;i<=N;i++)
{
if(!ispri[i])
{
pri[++cnt]=i;
g[i]=1;
mu[i]=-1;
}
for(int j=1;j<=cnt&&pri[j]*i<=N;j++)
{
int x=pri[j]*i;
ispri[x]=1;
g[x]=g[i]+1;
if(i%pri[j]) mu[x]=-mu[i];
else break;
}
}
for(int i=1;i<=20;i++) inv[i]=qp(i,mod-2);
yuu[0]=yuuinv[0]=1;
for(int j,i=1;i<=N;i++)
{
int bee=1;
for(j=1;j*j<i;j++)
{
if(i%j) continue;
bee=mul(bee,cal(g[j],mu[i/j]));
bee=mul(bee,cal(g[i/j],mu[j]));
}
if(j*j==i) bee=mul(bee,cal(g[j],mu[i/j]));
yuu[i]=mul(yuu[i-1],bee);
}
for(int i=1;i<=N;i++) yuuinv[i]=qp(yuu[i],mod-2);
}
int main()
{
init();
int T,n,m;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
int ans=1;
for(int l=1,r;l<=min(n,m);l=r+1)
{
r=min(n/(n/l),m/(m/l));
ans=mul(ans,qp(mul(yuu[r],yuuinv[l-1]),1ll*(n/l)*(m/l)%(mod-1)));
}
printf("%d\n",ans);
}
return 0;
}

2019.2.16

牛客练习赛 小D的Lemon 解题报告的更多相关文章

  1. 牛客练习赛 小A与任务 解题报告

    小A与任务 链接: https://ac.nowcoder.com/acm/contest/369/B 来源:牛客网 题目描述 小A手头有 \(n\) 份任务,他可以以任意顺序完成这些任务,只有完成当 ...

  2. 牛客练习赛 小D的剑阵 解题报告

    小D的剑阵 题意链接: https://ac.nowcoder.com/acm/contest/369/F 来源:牛客网 现在你有 \(n\) 把灵剑,其中选择第i把灵剑会得到的 \(w_i\) 攻击 ...

  3. 牛客OI周赛7-普及组 解题报告

    出题人好评. 评测机差评. A 救救喵咪 二位偏序.如果数据范围大的话直接树状数组,不过才1000就\(O(n^2)\)暴力就ok了. #include <bits/stdc++.h> s ...

  4. nowcoder(牛客网)OI测试赛2 解题报告

    qwq听说是一场普及组难度的比赛,所以我就兴高采烈地过来了qwq 然后发现题目确实不难qwq.....但是因为蒟蒻我太蒻了,考的还是很差啦qwq orz那些AK的dalao们qwq 赛后闲来无事,弄一 ...

  5. 牛客练习赛 小A与最大子段和 解题报告

    小A与最大子段和 题意 在一个序列 \(\{a\}\) 里找到一个非空子段 \(\{b\}\), 满足 \(\sum\limits_{i=1}^{|b|}b_i\times i\) 最大 \(n\le ...

  6. 牛客OI赛制测试赛3 解题报告

    前话: 话说考试描述:普及难度. 于是想在这场比赛上涨点信心. 考出来的结果:Point:480     Rank:40 然而同机房的最好成绩是 510. 没考好啊!有点炸心态,D题一些细节没有注意, ...

  7. 牛客 NOIp模拟1 T1 中位数 解题报告

    中位数 题目描述 小\(N\)得到了一个非常神奇的序列\(A\).这个序列长度为\(N\),下标从\(1\)开始.\(A\)的一个子区间对应一个序列,可以由数对\([l,r]\)表示,代表\(A[l] ...

  8. 牛客 NOIp模拟1 T3 保护 解题报告

    保护 题目描述 \(C\)国有\(n\)个城市,城市间通过一个树形结构形成一个连通图.城市编号为\(1\)到\(n\),其中\(1\)号城市为首都.国家有\(m\)支军队,分别守卫一条路径的城市.具体 ...

  9. nowcoder(牛客网)OI测试赛3 解题报告

    昨天因为胡搞了一会儿社团的事情,所以错过(逃过)了nowcoder的测试赛..... 以上,听说还是普及组难度qwq,而且还有很多大佬AK(然而我这么蒻肯定还是觉得有点难度的吧qwq) 不过我还是日常 ...

随机推荐

  1. Luogu P1494 [国家集训队]小Z的袜子

    比较简单的莫队题,主要是为了熟练板子. 先考虑固定区间时我们怎么计算,假设区间\([l,r]\)内颜色为\(i\)的袜子有\(cnt_i\)只,那么对于颜色\(i\)来说,凑齐一双的情况个数为: \( ...

  2. python中使用pymongo操作mongo

    MongoDB是由C++语言编写的非关系型数据库,是一个基于分布式文件存储的开源数据库系统,其内容存储形式类似JSON对象,它的字段值可以包含其他文档.数组及文档数组,非常灵活.在这一节中,我们就来看 ...

  3. nginx日志格式字段

    Nginx日志主要分为两种:访问日志和错误日志.日志开关在Nginx配置文件(/etc/nginx/nginx.conf)中设置,两种日志都可以选择性关闭,默认都是打开的. 访问日志 访问日志主要记录 ...

  4. Individual Reading Assignment

    1.What exactly does 'agile' mean? 1)Agile software development does not means a invariable mode of p ...

  5. 个人博客week7

    IBM大型机之父佛瑞德·布鲁克斯(Frederick P. Brooks, Jr.)在1986年发表的一篇关于软件工程的经典论文,便以<没有银弹:软件工程的本质性与附属性工作>(No Si ...

  6. 剑指offer:数组中重复的数字

    题目描述: 在一个长度为n的数组里的所有数字都在0到n-1的范围内. 数组中某些数字是重复的,但不知道有几个数字是重复的.也不知道每个数字重复几次.请找出数组中任意一个重复的数字. 例如,如果输入长度 ...

  7. Daily Scrum- 12/28

    Meeting Minutes 讨论alpha 的feed back; 决定添加按钮向下的动作,作为feature; 完成了界面的微调,开始使用alpha.1进行feed back的收集 Burndo ...

  8. NoSuchBeanDefinitionException:No qualifying bean of type

    Exception in thread "main" org.springframework.beans.factory.NoSuchBeanDefinitionException ...

  9. SVN入门教程

    1. 什么是SVN SVN全名Subversion,即版本控制系统.SVN与CVS一样,是一个跨平台的软件,支持大多数常见的操作系统. 作为一个开源的版本控制系统,Subversion管理者随时间改变 ...

  10. Spring Boot features - Profiles

    https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-profiles.html https://w ...