MT【207】|ax^2+bx+c|中判别式$\Delta$的含义
已知$a,b\in R^+,a+b=2$且对任意的$x\in R$,均有
$|2x^2+ax-b|\ge|x^2+cx+d|$则$\dfrac{d-4c}{cd}$的最小值______
提示:注意到$\Delta=a^2+8b>0$有两根与$x^2+cx+d=0$的两根必定相同
$\therefore 1:2=c:a=d:-b$,从而可得$c-d=1$故
$\dfrac{d-4c}{cd}=\dfrac{1}{c}-\dfrac{4}{d}=(\dfrac{1}{c}-\dfrac{4}{d})(c-d)\ge(1+2)^2=9$
当$c=\dfrac{1}{3},d=\dfrac{-2}{3}$时取到最小值.
注:1最后一个不等式用到了反柯西。
2.事实上一般的$|ax^2+bx+c|\ge|dx^2+ex+f|$恒成立时,$|\Delta_1|=|b^2-4ac|\ge|\Delta_2|=|e^2-4df|$
MT【207】|ax^2+bx+c|中判别式$\Delta$的含义的更多相关文章
- 求一元二次方程ax^2+bx+c=0的解
Console.WriteLine("求解方程ax^2+bx+c=0的解."); Console.WriteLine("请分别输入a,b,c的值(注意每输入一个值按一下回 ...
- python 练习题:定义一个函数quadratic(a, b, c),接收3个参数,返回一元二次方程ax^2+bx+c=0的两个解
请定义一个函数quadratic(a, b, c),接收3个参数,返回一元二次方程 ax^2+bx+c=0的两个解. 提示: 一元二次方程的求根公式为: x1 = (-b + math.sqrt((b ...
- Python程序计算ax^2+bx+c=0方程根
程序用来计算ax^2+bx+c=0的两个根,有些异常暂时无法处理: #!/usr/bin/python # -*- coding: utf-8 -*- #当程序存在中文时,注释表明使用utf-8编码解 ...
- 请定义一个函数quadratic(a, b, c),接收3个参数,返回一元二次方程 ax^2+bx+c=0ax 2 +bx+c=0 的两个解。
#!/usr/bin/python # 导入math包 import math def quadratic(a, b, c): if not isinstance(a, (int, float))an ...
- Atitit 软件开发中 瓦哈比派的核心含义以及修行方法以及对我们生活与工作中的指导意义
Atitit 软件开发中 瓦哈比派的核心含义以及修行方法以及对我们生活与工作中的指导意义 首先我们指明,任何一种行动以及教派修行方法都有他的多元化,只看到某一方面,就不能很好的评估利弊,适不适合自己使 ...
- 【转】java中volatile关键字的含义
java中volatile关键字的含义 在java线程并发处理中,有一个关键字volatile的使用目前存在很大的混淆,以为使用这个关键字,在进行多线程并发处理的时候就可以万事大吉. Java语言 ...
- MyEclipse 中各种 libraries 的含义
MyEclipse 中各种 libraries 的含义 JRE System Library,Java EE 5 Libraries,Referenced Libraries这三个都是各 ...
- C语言中关键字volatile的含义【转】
本文转载自:http://m.jb51.net/article/37489.htm 本篇文章是对C语言中关键字volatile的含义进行了详细的分析介绍,需要的朋友参考下 volatile 的意思是“ ...
- [转]Android中内存占用的含义:(VSS,PSS,RSS,USS)
Android中内存占用的含义:(VSS,PSS,RSS,USS) 作者: andforce 分类: 安卓系统 发布时间: 2013-09-07 00:03 ė1,915 浏览数 6没有评论 在eng ...
随机推荐
- Linux lsof 命令
lsof(list open files)是一个查看进程打开的文件的工具. 在 linux 系统中,一切皆文件.通过文件不仅仅可以访问常规数据,还可以访问网络连接和硬件.所以 lsof 命令不仅可以查 ...
- MRT与MRTS工具官宣退休,推荐使用HEG
今天错误的删除搞丢了之前下载的MRT与MRTS工具,浏览Modis官网下载时发现找不到了,后来在其官网上发现了这则通知,原来早已停止更新的MRT这次彻底退修了.通知原文如下~~~ The downlo ...
- markdown操作手册
**1.标题** # h1 h1自带分割线 ## h2 ### h3 #### h4 ##### h5 ###### h6 **2.圆点** - 圆点 **3.分割线,-和*都可以** --- *** ...
- 老牌阅读器nook2刷机整理
kindle肯定是现在大多数人了解电纸书这个产品的开端,也给我留下了一段美好的回忆,不折腾,不死机,官方书城让人省心不少,不过作为半个折腾爱好者,kindle显然不符合我的理念,遂慢慢入了安卓电纸书的 ...
- SCP和Rsync远程拷贝的几个技巧
scp是secure copy的简写,用于在Linux下进行远程拷贝文件的命令,和它类似的命令有cp,不过cp只是在本机进行拷贝不能跨服务器,而且scp传输是加密的.可能会稍微影响一下速度.当你服务器 ...
- C. Multi-Subject Competition
链接 [https://codeforces.com/contest/1082/problem/C] 题意 有n个人,m个科目,每个人都有选的科目si,以及他的能力值ri, 规则是每个科目要么选要么不 ...
- Git科普来一发:【rebase】与【merge】
rebase 假设你现在基于远程分支"origin",创建一个叫"mywork"的分支. $ git checkout -b mywork origin 现在我 ...
- 个人阅读作业——软件工程M1/M2的总结
临近学期末,本学期的软件工程课也已经结束了,在此我对软件工程课中,我们团队M1和M2开发阶段中,我做的工作做一个总结 我是DEV,主要工作是等着上级给我分配任务,但是很多时候如果这个活我不干,其他人就 ...
- 软件工程启程篇章:结对编程和进阶四则运算(197 & 199)
0x01 :序言:无关的事 I wrote a sign called "Dead End" in front of myself, but love crossed it wit ...
- Linux内核分析— —扒开系统调用的三层皮(上)
实验部分 根据系统调用表,选取一个系统调用.我选得是mkdir这个系统调用,其系统调用号为39,即0x27 由于mkdir函数的原型为int mkdir (const char *filename, ...