题意

求 $$\displaystyle \sum_{i=1}^{n} \sum_{j=1}^{n} [\mathrm{lcm} (i,j) > n] \pmod {10^9 + 7}$$ .

$ n \le 10^{10}$ .

题解

这是我们考试的一道题 ... 考试的时候以为能找出规律 , 后来发现还是一道数论题 qwq

而且部分分很不良心啊 , 只给了 \(O(n)\) 多的一点分 , 我 \(O(n \ln n)\) 根本没活路 .. 还是直接开始推吧 ~

\[\begin{align}
\sum_{i=1}^{n} \sum_{j=1}^{n} [\mathrm{lcm} (i,j) > n] &=n^2- \sum_{i=1}^{n} \sum_{j=1}^{n} [\mathrm{lcm} (i,j) \le n]\\
&= n^2 - \sum_{d=1}^{n} \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{d} \rfloor} [ijd \le n] \cdot [i \bot j] \\
&= n^2 - \sum_{d=1}^{n} \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{d} \rfloor}[ijd \le n] \sum_{x|(i,j)}\mu(x) \\
&= n^2 - \sum_{d=1}^{n} \sum_{x=1}^{\lfloor \frac{n}{d}\rfloor} \mu(x) \sum_{i=1}^{\lfloor \frac{n}{dx} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{dx} \rfloor}[ijdx^2 \le n] \\
&= n^2 - \sum_{x=1}^{n} \mu(x) \sum_{d=1}^{\lfloor \frac{n}{x} \rfloor} \sum_{i=1}^{\lfloor \frac{n}{dx} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{dx} \rfloor}[ijdx^2 \le n] \\
\end{align}
\]

到这一步不难发现由于 \([ijdx^2 \le n]\) 可以缩减很多范围了 比如 \(x \le \lfloor \sqrt n \rfloor\) ... 直接一波缩范围

\[\displaystyle = n^2 - \sum_{x=1}^{\lfloor \sqrt n \rfloor} \mu(x) \sum_{d=1}^{\lfloor \frac{n}{x^2} \rfloor} \sum_{i=1}^{\lfloor \frac{n}{dx^2} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{dx^2} \rfloor}[ij \le \lfloor \frac{n}{dx^2} \rfloor]
\]

我们可以考虑看一下后面两个 \(\sum\) 好像很有特点。令

\[\displaystyle f(x) = \sum_{i=1}^{x} \sum_{j=1}^{x} [ij \le x]
\]

那么原式就是

\[\displaystyle = n^2 - \sum_{x=1}^{\lfloor \sqrt n \rfloor} \mu(x) \sum_{d=1}^{\lfloor \frac{n}{x^2} \rfloor} f(\lfloor \frac{n}{dx^2} \rfloor)
\]

观察一下 \(f(x)\) 好像也可以进行转化

考虑枚举一个 \(i,j\) 的积 , 看有多少对 \((i,j)\) 可以 .

\[\displaystyle f(x) = \sum_{d=1}^{x} \lfloor \frac{x}{d} \rfloor
\]

这个容易在 \(O(\sqrt n)\) 直接分块解决 . 这样带入直接做就有 60 分了 \((n \le 10^8)\) , 不会积分证明复杂度QAQ ....

卡一卡 , 在本机上能跑 \(10^9\) 能拿80分 爽歪歪 qwq

后来我意识到瓶颈在 \(f(x)\) 处 , 各种问人是否有公式计算 .... 后来才发现 这个竟然是今年集训队论文 ??!!!

**《一些特殊的数论函数求和问题》 —— 安徽师范大学附属中学 朱震霆 **

考虑我最初的那个式子

\[\displaystyle f(n) = \sum_{i=1}^{n} \sum_{j=1}^{n} [ij \le n]
\]

难道不就是数 \(xy=n\) 下面的整点个数吗 !!

我认真看了论文许久,可还是看不懂,只知道大概就是用很多根切线去分割,然后去数切线下方的点.

过几天看懂了再来理解 .... 只知道复杂度是 \(O(n^{\frac{1}{3}})\) 的,十分优秀 ~

然后直接找到 whzzt 的代码 ,尝试着放进去我的程序...

竟然过了!!!跑了 \(0.5s\) 就过了.... (原来要跑 \(6s\) )

挂一波代码就跑 qwq

代码

#include <bits/stdc++.h>
#define For(i, l, r) for (register ll i = (ll)(l), i##end = (ll)(r); i <= i##end; ++ i)
#define Fordown(i, r, l) for (register ll i = (ll)(r), i##end = (ll)(l); i >= i##end; -- i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std; typedef long long ll;
inline bool chkmin(ll &a, ll b) { return b < a ? a = b, 1 : 0; }
inline bool chkmax(ll &a, ll b) { return b > a ? a = b, 1 : 0; } inline ll read() {
ll x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * fh;
} void File() {
freopen ("ra.in", "r", stdin);
freopen ("ra.out", "w", stdout);
} const ll Mod = 1e9 + 7; const ll N = 1e6 + 1e3;
ll mu[N], prime[N], cnt = 0; bitset<N> is_prime;
void Init(ll maxn) {
is_prime.set(); is_prime[0] = is_prime[1] = false; mu[1]= 1;
For (i, 2, maxn) {
if (is_prime[i])
prime[++ cnt] = i, mu[i] = -1;
For (j, 1, cnt) {
ll res = prime[j] * i;
if (res > maxn) break ;
is_prime[res] = false;
if (i % prime[j]) mu[res] = - mu[i];
else { mu[res] = 0; break ; }
}
}
} /*inline ll SumDown(ll a) {
ll res = M[a]; if (res) return res;
For (i, 1, a) {
register ll now = a / i, Nexti = a / now;
res += now * (Nexti - i + 1); i = Nexti;
}
return (M[a] = res % Mod);
}*/ typedef unsigned long long uLL;
typedef unsigned long long ull;
typedef unsigned int uint; unordered_map<ull, uLL> M;
namespace ds {
namespace stac {
const int N = 100005;
uint qu[N][2]; int qr;
inline void pop () { qr --; }
inline void push (uint x, uint y) { qr ++; qu[qr][0] = x; qu[qr][1] = y; }
inline void top (uint &x, uint &y) { x = qu[qr][0]; y = qu[qr][1]; }
}
using stac :: push;
using stac :: pop;
using stac :: top; inline uLL solve (ull n) {
uLL ret = M[n];
if (ret) return ret;
ull w = pow (n, 0.38), v = sqrtl (n), x, y;
uint dx, dy, ux, uy, mx, my;
while (v * v <= n) v ++; while (v * v > n) v --;
x = n / v, y = n / x + 1;
push (1, 0); push (1, 1);
auto outside = [&] (ull x, ull y) { return x * y > n; };
auto cut_off = [&] (ull x, uint dx, uint dy) { return (uLL)x * x * dy >= (uLL)n * dx; };
while (stac :: qr) {
top (dx, dy);
while (outside (x + dx, y - dy)) {
ret += x * dy + ull(dy + 1) * (dx - 1) / 2;
x += dx, y -= dy;
}
if (y <= w) break;
while (true) {
pop (), ux = dx, uy = dy, top (dx, dy);
if (outside (x + dx, y - dy)) break;
}
while (true) {
mx = ux + dx, my = uy + dy;
if (!outside (x + mx, y - my)) {
if (cut_off (x + mx, dx, dy)) break;
ux = mx, uy = my;
} else push (dx = mx, dy = my);
}
}
for (y --; y; y --) ret += n / y;
return stac :: qr = 0, (M[n] = ret * 2 - v * v);
}
} int main() {
File();
ll n = read(), res = 0;
Init(1e6); For (x, 1, sqrt(n)) if (mu[x]) {
register ll Lim = n / (x * x), tot = 0;;
For (d, 1, Lim) {
register ll now = Lim / d, Nextd = Lim / now;
tot += ds :: solve(now) * (Nextd - d + 1); d = Nextd;
}
(res += Mod + tot % Mod * mu[x]) %= Mod;
} res = ((n % Mod) * (n % Mod) % Mod - res + Mod) % Mod; cout << res << endl; #ifdef zjp_shadow
cerr << (double) clock() / CLOCKS_PER_SEC << endl;
#endif return 0;
}

ra (数论 , 莫比乌斯反演 , 整点统计)的更多相关文章

  1. 【BZOJ4176】Lucas的数论 莫比乌斯反演

    [BZOJ4176]Lucas的数论 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)) ...

  2. [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  3. 51Nod1675 序列变换 数论 莫比乌斯反演

    原文http://www.cnblogs.com/zhouzhendong/p/8665675.html 题目传送门 - 51Nod1675 题意 给定序列$a,b$,让你求满足$\gcd(x,y)= ...

  4. UOJ#62. 【UR #5】怎样跑得更快 数论 莫比乌斯反演

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ62.html 题解 太久没更博客了,该拯救我的博客了. $$\sum_{1\leq j \leq n} \ ...

  5. 【bzoj3601】一个人的数论 莫比乌斯反演+高斯消元

    题目描述 题解 莫比乌斯反演+高斯消元 (前方高能:所有题目中给出的幂次d,公式里为了防止混淆,均使用了k代替) #include <cstdio> #include <cstrin ...

  6. 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛

    Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...

  7. 组合 数论 莫比乌斯反演 hdu1695

    题解:https://blog.csdn.net/lixuepeng_001/article/details/50577932 题意:给定范围1-b和1-d求(i,j)=k的数对的数量 #includ ...

  8. 2017ACM暑期多校联合训练 - Team 8 1002 HDU 6134 Battlestation Operational (数论 莫比乌斯反演)

    题目链接 Problem Description The Death Star, known officially as the DS-1 Orbital Battle Station, also k ...

  9. BZOJ 4176 Lucas的数论 莫比乌斯反演+杜教筛

    题意概述:求,n<=10^9,其中d(n)表示n的约数个数. 分析: 首先想要快速计算上面的柿子就要先把d(ij)表示出来,有个神奇的结论: 证明:当且仅当a,b没有相同的质因数的时候我们统计其 ...

随机推荐

  1. C# LINQ 详解 From Where Select Group Into OrderBy Let Join

    目录 1. 概述 2. from子句 3. where子句 4. select子句 5. group子句 6. into子句 7. 排序子句 8. let子句 9. join子句 10. 小结 1. ...

  2. 性能调优之vmstat命令

    vmstat是Virtual Meomory Statistics(虚拟内存统计)的缩写,可对操作系统的虚拟内存.进程.IO读写.CPU活动等进行监视.它是对系统的整体情况进行统计,不足之处是无法对某 ...

  3. 快速零配置迁移 API 适配 iOS 对 IPv6 以及 HTTPS 的要求

    本文快速分享一下快速零配置迁移 API 适配 iOS 对 IPv6 以及 HTTPS 的要求的方法,供大家参考. 原文发表于我的技术博客 零配置方案 最新的苹果审核政策对 API 的 IPv6 以及 ...

  4. 记录:EM 算法估计混合高斯模型参数

    当概率模型依赖于无法观测的隐性变量时,使用普通的极大似然估计法无法估计出概率模型中参数.此时需要利用优化的极大似然估计:EM算法. 在这里我只是想要使用这个EM算法估计混合高斯模型中的参数.由于直观原 ...

  5. SC1243sensor噪点问题调试

    接手一块SC1243sensor的板子调试,仔细核对了原理图和PCB发现,PCB不是很好,电源处理不够好,但是出图了,问题是有噪点,麻点,根据经验要求软件修改了PCLK的极性噪点消失,问题解决. 1: ...

  6. Mysqldump备份说明及数据库备份脚本分享-运维笔记

    MySQLdump是MySQL自带的导出数据工具,即mysql数据库中备份工具,用于将MySQL服务器中的数据库以标准的sql语言的方式导出,并保存到文件中.Mysqldump是一个客户端逻辑备份的工 ...

  7. taro之React Native 端开发研究

    初步结论:如果想把 React Native 集成到现有的原生项目中,不能使用taro的React Native 端开发功能(目前来说不能实现,以后再观察).   RN开发有2种模式: 1.一是原生A ...

  8. 复审Partner

    复审代码后,发现了一些问题: 首先说优点:代码十分工整,很清晰,各种类易于理解,逻辑上很通顺. 基本实现了代码功能,输出正确. 发现的缺点:对于文件后缀的识别有点问题,不能识别所需求的所有文件,只有一 ...

  9. 【CV】ICCV2015_Unsupervised Visual Representation Learning by Context Prediction

    Unsupervised Visual Representation Learning by Context Prediction Note here: it's a learning note on ...

  10. 【个人博客作业Week7】软件工程团队项目一轮迭代感想与反思

    (发布晚原因:发到团队博客了 一.关于银弹 在佛瑞德·布鲁克斯于1986年发布的<没有银弹:软件工程的本质性与附属性工作>这篇软件工程的经典论文中,作者向我们讲述了软件工程没有银弹这样的理 ...