ra (数论 , 莫比乌斯反演 , 整点统计)
题意
求 $$\displaystyle \sum_{i=1}^{n} \sum_{j=1}^{n} [\mathrm{lcm} (i,j) > n] \pmod {10^9 + 7}$$ .
$ n \le 10^{10}$ .
题解
这是我们考试的一道题 ... 考试的时候以为能找出规律 , 后来发现还是一道数论题 qwq
而且部分分很不良心啊 , 只给了 \(O(n)\) 多的一点分 , 我 \(O(n \ln n)\) 根本没活路 .. 还是直接开始推吧 ~
\sum_{i=1}^{n} \sum_{j=1}^{n} [\mathrm{lcm} (i,j) > n] &=n^2- \sum_{i=1}^{n} \sum_{j=1}^{n} [\mathrm{lcm} (i,j) \le n]\\
&= n^2 - \sum_{d=1}^{n} \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{d} \rfloor} [ijd \le n] \cdot [i \bot j] \\
&= n^2 - \sum_{d=1}^{n} \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{d} \rfloor}[ijd \le n] \sum_{x|(i,j)}\mu(x) \\
&= n^2 - \sum_{d=1}^{n} \sum_{x=1}^{\lfloor \frac{n}{d}\rfloor} \mu(x) \sum_{i=1}^{\lfloor \frac{n}{dx} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{dx} \rfloor}[ijdx^2 \le n] \\
&= n^2 - \sum_{x=1}^{n} \mu(x) \sum_{d=1}^{\lfloor \frac{n}{x} \rfloor} \sum_{i=1}^{\lfloor \frac{n}{dx} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{dx} \rfloor}[ijdx^2 \le n] \\
\end{align}
\]
到这一步不难发现由于 \([ijdx^2 \le n]\) 可以缩减很多范围了 比如 \(x \le \lfloor \sqrt n \rfloor\) ... 直接一波缩范围
\]
我们可以考虑看一下后面两个 \(\sum\) 好像很有特点。令
\]
那么原式就是
\]
观察一下 \(f(x)\) 好像也可以进行转化
考虑枚举一个 \(i,j\) 的积 , 看有多少对 \((i,j)\) 可以 .
\]
这个容易在 \(O(\sqrt n)\) 直接分块解决 . 这样带入直接做就有 60 分了 \((n \le 10^8)\) , 不会积分证明复杂度QAQ ....
卡一卡 , 在本机上能跑 \(10^9\) 能拿80分 爽歪歪 qwq
后来我意识到瓶颈在 \(f(x)\) 处 , 各种问人是否有公式计算 .... 后来才发现 这个竟然是今年集训队论文 ??!!!
**《一些特殊的数论函数求和问题》 —— 安徽师范大学附属中学 朱震霆 **
考虑我最初的那个式子
\]
难道不就是数 \(xy=n\) 下面的整点个数吗 !!
我认真看了论文许久,可还是看不懂,只知道大概就是用很多根切线去分割,然后去数切线下方的点.
过几天看懂了再来理解 .... 只知道复杂度是 \(O(n^{\frac{1}{3}})\) 的,十分优秀 ~
然后直接找到 whzzt 的代码 ,尝试着放进去我的程序...
竟然过了!!!跑了 \(0.5s\) 就过了.... (原来要跑 \(6s\) )
挂一波代码就跑 qwq
代码
#include <bits/stdc++.h>
#define For(i, l, r) for (register ll i = (ll)(l), i##end = (ll)(r); i <= i##end; ++ i)
#define Fordown(i, r, l) for (register ll i = (ll)(r), i##end = (ll)(l); i >= i##end; -- i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std;
typedef long long ll;
inline bool chkmin(ll &a, ll b) { return b < a ? a = b, 1 : 0; }
inline bool chkmax(ll &a, ll b) { return b > a ? a = b, 1 : 0; }
inline ll read() {
ll x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * fh;
}
void File() {
freopen ("ra.in", "r", stdin);
freopen ("ra.out", "w", stdout);
}
const ll Mod = 1e9 + 7;
const ll N = 1e6 + 1e3;
ll mu[N], prime[N], cnt = 0; bitset<N> is_prime;
void Init(ll maxn) {
is_prime.set(); is_prime[0] = is_prime[1] = false; mu[1]= 1;
For (i, 2, maxn) {
if (is_prime[i])
prime[++ cnt] = i, mu[i] = -1;
For (j, 1, cnt) {
ll res = prime[j] * i;
if (res > maxn) break ;
is_prime[res] = false;
if (i % prime[j]) mu[res] = - mu[i];
else { mu[res] = 0; break ; }
}
}
}
/*inline ll SumDown(ll a) {
ll res = M[a]; if (res) return res;
For (i, 1, a) {
register ll now = a / i, Nexti = a / now;
res += now * (Nexti - i + 1); i = Nexti;
}
return (M[a] = res % Mod);
}*/
typedef unsigned long long uLL;
typedef unsigned long long ull;
typedef unsigned int uint;
unordered_map<ull, uLL> M;
namespace ds {
namespace stac {
const int N = 100005;
uint qu[N][2]; int qr;
inline void pop () { qr --; }
inline void push (uint x, uint y) { qr ++; qu[qr][0] = x; qu[qr][1] = y; }
inline void top (uint &x, uint &y) { x = qu[qr][0]; y = qu[qr][1]; }
}
using stac :: push;
using stac :: pop;
using stac :: top;
inline uLL solve (ull n) {
uLL ret = M[n];
if (ret) return ret;
ull w = pow (n, 0.38), v = sqrtl (n), x, y;
uint dx, dy, ux, uy, mx, my;
while (v * v <= n) v ++; while (v * v > n) v --;
x = n / v, y = n / x + 1;
push (1, 0); push (1, 1);
auto outside = [&] (ull x, ull y) { return x * y > n; };
auto cut_off = [&] (ull x, uint dx, uint dy) { return (uLL)x * x * dy >= (uLL)n * dx; };
while (stac :: qr) {
top (dx, dy);
while (outside (x + dx, y - dy)) {
ret += x * dy + ull(dy + 1) * (dx - 1) / 2;
x += dx, y -= dy;
}
if (y <= w) break;
while (true) {
pop (), ux = dx, uy = dy, top (dx, dy);
if (outside (x + dx, y - dy)) break;
}
while (true) {
mx = ux + dx, my = uy + dy;
if (!outside (x + mx, y - my)) {
if (cut_off (x + mx, dx, dy)) break;
ux = mx, uy = my;
} else push (dx = mx, dy = my);
}
}
for (y --; y; y --) ret += n / y;
return stac :: qr = 0, (M[n] = ret * 2 - v * v);
}
}
int main() {
File();
ll n = read(), res = 0;
Init(1e6);
For (x, 1, sqrt(n)) if (mu[x]) {
register ll Lim = n / (x * x), tot = 0;;
For (d, 1, Lim) {
register ll now = Lim / d, Nextd = Lim / now;
tot += ds :: solve(now) * (Nextd - d + 1); d = Nextd;
}
(res += Mod + tot % Mod * mu[x]) %= Mod;
}
res = ((n % Mod) * (n % Mod) % Mod - res + Mod) % Mod;
cout << res << endl;
#ifdef zjp_shadow
cerr << (double) clock() / CLOCKS_PER_SEC << endl;
#endif
return 0;
}
ra (数论 , 莫比乌斯反演 , 整点统计)的更多相关文章
- 【BZOJ4176】Lucas的数论 莫比乌斯反演
[BZOJ4176]Lucas的数论 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)) ...
- [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
- 51Nod1675 序列变换 数论 莫比乌斯反演
原文http://www.cnblogs.com/zhouzhendong/p/8665675.html 题目传送门 - 51Nod1675 题意 给定序列$a,b$,让你求满足$\gcd(x,y)= ...
- UOJ#62. 【UR #5】怎样跑得更快 数论 莫比乌斯反演
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ62.html 题解 太久没更博客了,该拯救我的博客了. $$\sum_{1\leq j \leq n} \ ...
- 【bzoj3601】一个人的数论 莫比乌斯反演+高斯消元
题目描述 题解 莫比乌斯反演+高斯消元 (前方高能:所有题目中给出的幂次d,公式里为了防止混淆,均使用了k代替) #include <cstdio> #include <cstrin ...
- 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
- 组合 数论 莫比乌斯反演 hdu1695
题解:https://blog.csdn.net/lixuepeng_001/article/details/50577932 题意:给定范围1-b和1-d求(i,j)=k的数对的数量 #includ ...
- 2017ACM暑期多校联合训练 - Team 8 1002 HDU 6134 Battlestation Operational (数论 莫比乌斯反演)
题目链接 Problem Description The Death Star, known officially as the DS-1 Orbital Battle Station, also k ...
- BZOJ 4176 Lucas的数论 莫比乌斯反演+杜教筛
题意概述:求,n<=10^9,其中d(n)表示n的约数个数. 分析: 首先想要快速计算上面的柿子就要先把d(ij)表示出来,有个神奇的结论: 证明:当且仅当a,b没有相同的质因数的时候我们统计其 ...
随机推荐
- 一头雾水的"Follow The Pointer"
原文:一头雾水的"Follow The Pointer" 一头雾水的"Follow The Pointer" ...
- vim-plug 插件安装与操作
安装 vim-plug curl -fLo ~/.vim/autoload/plug.vim --create-dirs https://raw.githubusercontent.com/juneg ...
- vue-router 注意事项
1.vue-router 两种模式 (1)mode:hash,hash模式背后的原理是onhashchange事件,可以在window对象上监听这个事件.vue默认为hash模式 window.onh ...
- Unity 敌人波次设计
一.平均时间随机敌人 将所有种类敌人预制物体放在一个列表里面,每隔时间T从列表中随机选出一个生成在场景中. 二.时间加权紧迫度随机敌人 在随机情况下每种敌人出现的概率近似相等,当敌人种类较多时,有可能 ...
- 领跑衫获奖感言 & 课程总结
很荣幸在最后一次课获得了黄色领跑衫.在此,我要感谢教师杨贵福,感谢<构建之法>的作者邹欣老师和出版人周筠老师,感谢“耐撕”团队的队员们. 作为旁听生,最后一堂课,有些不舍.不多说,先上图, ...
- 实践简单的项目WC
#include<iostream> #include<fstream> #include<string> #include<Windows.h> us ...
- Linux内核分析第四周学习总结
朱国庆+原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 扒开系统调用的三层皮 ...
- 第一次Spring总结
第一阶段:下载了类似app使用,并做了对比,分析,对自己的app有了一些构思,完成了环境的配置.在这一阶段,一开始只有两个女生显得有点弱,面对从未接触过的app项目,首先就是配置环境方面的,在经过班上 ...
- zookeeper安装和使用 windows环境(转)
原文地址: http://blog.csdn.net/tlk20071/article/details/52028945 简介 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是G ...
- python 中一些常用的内置函数
一.常用内置函数 abs(x) 返回绝对值,参数为int float,非字符只能num all(iterable) 如果迭代对象里面的所有值都为真就返回True.all([1, 2, -7]) --- ...