pandas处理多组数据的时候往往会要用到数据的合并处理,使用 concat是一种基本的合并方式.而且concat中有很多参数可以调整,合并成你想要的数据形式.

1、axis(合并方向):axis=0是预设值,因此未设定任何参数时,函数默认axis=0

>>> import pandas as pd
>>> import numpy as np
#定义资料集
>>> df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
>>> df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
>>> df3 = pd.DataFrame(np.ones((3,4))*2, columns=['a','b','c','d'])
#concat纵向合并
>>> res = pd.concat([df1, df2, df3], axis=0)
>>> print(res)
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0

仔细观察会发现结果的index是0, 1, 2, 0, 1, 2, 0, 1, 2,若要将index重置,请看下面。

2、ignore——index(重置index)

#承上一个例子,并将index_ignore设定为True
>>> res = pd.concat([df1, df2, df3], axis=0, ignore_index=True)
>>> print(res)
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
6 2.0 2.0 2.0 2.0
7 2.0 2.0 2.0 2.0
8 2.0 2.0 2.0 2.0

结果的index变0, 1, 2, 3, 4, 5, 6, 7, 8。

3、join(合并方式)

join='outer'为预设值,因此未设定任何参数时,函数默认join='outer'。此方式是依照column来做纵向合并,有相同的column上下合并在一起,其他独自的column个自成列,原本没有值的位置皆以NaN填充。

>>> import pandas as pd
>>> import numpy as np
>>> df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3])
>>> df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4])
#纵向"外"合并df1与df2
>>> res = pd.concat([df1, df2], axis=0, join='outer')
>>> print(res)
a b c d e
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 0.0 0.0 0.0 0.0 NaN
2 NaN 1.0 1.0 1.0 1.0
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0 #原理同上个例子的说明,但只有相同的column合并在一起,其他的会被抛弃。
#纵向"内"合并df1与df2
>>> res = pd.concat([df1, df2], axis=0, join='inner')
>>> print(res)
b c d
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0
2 1.0 1.0 1.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0 #重置index并打印结果
>>> res = pd.concat([df1, df2], axis=0, join='inner', ignore_index=True)
>>> print(res)
b c d
0 0.0 0.0 0.0
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
5 1.0 1.0 1.0

4、join_axes(依照axes合并)

>>> import pandas as pd
>>> import numpy as np
>>> df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3])
>>> df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4])
#依照`df1.index`进行横向合并
>>> res = pd.concat([df1, df2], axis=1, join_axes=[df1.index])
>>> print(res)
a b c d b c d e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 #移除join_axes,并打印结果
>>> res = pd.concat([df1, df2], axis=1)
>>> print(res)
a b c d b c d e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
4 NaN NaN NaN NaN 1.0 1.0 1.0 1.0

5、append(添加数据)

append只有纵向合并,没有横向合并。

>>> import pandas as pd
>>> import numpy as np >>> df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
>>> df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
>>> df3 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
>>> s1 = pd.Series([1,2,3,4], index=['a','b','c','d']) #将df2合并到df1的下面,以及重置index,并打印出结果
>>> res = df1.append(df2, ignore_index=True)
>>> print(res)
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0 #合并多个df,将df2与df3合并至df1的下面,以及重置index,并打印出结果
>>> res = df1.append([df2, df3], ignore_index=True)
>>> print(res)
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
6 1.0 1.0 1.0 1.0
7 1.0 1.0 1.0 1.0
8 1.0 1.0 1.0 1.0 #合并series,将s1合并至df1,以及重置index,并打印出结果
>>> res = df1.append(s1, ignore_index=True)
>>> print(res)
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 2.0 3.0 4.0

Pandas 合并 concat的更多相关文章

  1. 【转】Pandas学习笔记(五)合并 concat

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  2. pandas的concat函数和append方法

    pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,keys=None, levels=None, nam ...

  3. python pandas合并多个excel(xls和xlsx)文件(弹窗选择文件夹和保存文件)

    # python pandas合并多个excel(xls和xlsx)文件(弹窗选择文件夹和保存文件) import tkinter as tk from tkinter import filedial ...

  4. python pandas 合并数据函数merge join concat combine_first 区分

    pandas对象中的数据可以通过一些内置的方法进行合并:pandas.merge,pandas.concat,实例方法join,combine_first,它们的使用对象和效果都是不同的,下面进行区分 ...

  5. Pandas合并数据集之concat、combine_first方法

    轴向连接(concat) Numpy import numpy as np import pandas as pd from pandas import Series arr = np.arange( ...

  6. pandas合并数据集-【老鱼学pandas】

    有两个数据集,我们想把他们的结果根据相同的列名或索引号之类的进行合并,有点类似SQL中的从两个表中选择出不同的记录并进行合并返回. 合并 首先准备数据: import pandas as pd imp ...

  7. Pandas合并数据集之merge、join方法

    合并数据集 pandas.merge 可根据一个或多个键将不同DataFrame中的行连接起来. pandas.concat 可以沿着一条轴将多个对象堆叠到一起. combine_first merg ...

  8. Pandas 合并merge

    pandas中的merge和concat类似,但主要是用于两组有key column的数据,统一索引的数据. 通常也被用在Database的处理当中. 1.依据一组key合并 >>> ...

  9. pandas 合并数据

    1.  pandas 的merge,join 就不说了. 2.  神奇的:  concat      append 参考: PANDAS 数据合并与重塑(concat篇) 3.

随机推荐

  1. LOJ 3057 「HNOI2019」校园旅行——BFS+图等价转化

    题目:https://loj.ac/problem/3057 想令 b[ i ][ j ] 表示两点是否可行,从可行的点对扩展.但不知道顺序,所以写了卡时间做数次 m2 迭代的算法,就是每次遍历所有不 ...

  2. 【代码问题】SiameseFC

    [SiameseFC]: L Bertinetto, J Valmadre, JF Henriques, et al. Fully-convolutional siamese networks for ...

  3. Android的发展历史

    Android一词最早出现于法国作家利尔亚当(Auguste Villiers de l’Isle-Adam)在1886年发表的科幻小说<未来夏娃>(L’ève future)中.他将外表 ...

  4. head命令用法总结

    head命令用法总结 head命令用于显示文件的开头的内容.在默认情况下,head命令显示文件的头10行内容. 1.语法 head(选项)(参数) 2.选项 -c, --bytes=[-]K 显示每个 ...

  5. Bootstrap 插件收集

    Bootstrap-Mutilselect  将下拉选项扩展支持多选以及多种选择方式 http://davidstutz.de/bootstrap-multiselect/ Bootstrap Sel ...

  6. finstrument-functions

    2017-12-03 23:59:16 参考 如何快速地在每个函数入口处加入相同的语句? https://www.zhihu.com/question/56132218 做个存档 scj@scjCom ...

  7. get_time

    def get_current_time(): #将python的datetime转换为unix时间戳 dtime = datetime.datetime.now() un_time = time.m ...

  8. c++之__attribute__((unused))

    转自https://blog.csdn.net/u013083059/article/details/19342935 内核时注意到有些函数会有添加__attribute__((unused)), 在 ...

  9. aio,nio ,io 心得

    1.nio 流的过程有几个,连接,可读,读 ,返回 :连接了不一定可读,等待浪费时间,这些时间可以去读其他的连接,selector是管理,管理全部测一下可不可读,只对可读的连接进行读取.同时,nio有 ...

  10. c++ 中的数字和字符串的转换

    理由:一直忘记数字型的字符串和数字之间的转换,这次总结一下,以便后面再次用到. 其实 C++ 已经给我们写好了相应的函数,直接拿来用即可 QA1:如何把一个数字转换为一个数字字符串?(这个不是很常用) ...