5种kafka消费端性能优化方法
摘要:带你了解基于FusionInsight HD&MRS的5种kafka消费端性能优化方法。
本文分享自华为云社区《FusionInsight HD&MRSkafka消费端性能优化方法》,作者: 穿夹克的坏猴子。
kafka消费端性能优化主要从下面几个方面优化:
1.接口使用方面优化:
旧版本highlevel-consumer:偏移量信息存储在zookeeper,最大消费线程数与分区数量相同,不推荐
旧版本simpleconsumer:自行选择存储偏移量的方式,可以实现多线程消费单分区,若无特殊的性能要求,不推荐
新版本highlevel-consumer:偏移量信息存储在kafka指定的topic中,默认情况下最大消费线程数与分区数量相同,可以实现多线程消费单分区,推荐
2.参数调优(以下参数需根据现网环境评估调至合适的值):
2.1 旧版本消费者(kafka old API)参数调优
fetch.message.max.bytes:该参数为一次性从kafka集群中获取的数据块大小。在升级到651版本后这个参数需要调大,否则容易出现获取数据限制的报错。建议调整大小不小于kafka的服务端参数message.max.bytes。
注意如何确认为旧版本:如果生产者的配置方式包含如下这些配置,则为旧版本:group.id/zookeeper.connect
2.2 新版本参数(kafka new API)参数调优
max.poll.records:意味消费者一次poll()操作,能够获取的最大数据量,调整这个值能提升吞吐量,于此同时也需要同步提升max.poll.interval.ms的参数大小。
fetch.max.bytes:意味server端可返回给consumer的最大数据大小,增加可以提升吞吐量,但是在客户端和服务端网络延迟比较大的环境下,建议可以减小该值,防止业务处理数据超时。
heartbeat.interval.ms:消费超时时间,consumer与kafka之间的超时时间,该参数不能超过session.timeout.ms,通常设置为session.timeout.ms的三分之一,默认值:3000。
max.partition.fetch.bytes:限制每个consumer发起fetch请求时候,读到数据(record)的限制,设置过大,consumer本地缓存的数据就会越多,可能影响内存的使用,默认值:1048576。
fetch.max.bytes:server端可返回给consumer的最大数据大小,数值可大于max.partition.fetch.bytes,一般设置为默认值即可,默认值:52428800
session.timeout.ms:使用consumer组管理offset时,consumer与broker之间的心跳超时时间,如果consumer消费数据的频率非常低,建议增大这个参数值,默认值:10000。
auto.offset.reset:消费过程中无法找到数据消费到的offset位置,所选择的消费策略,earliest:从头开始消费,可能会消费到重复数据,latest:从数据末尾开始消费,可能会丢失数据。默认值:earlist。
max.poll.interval.ms:消费者在每一轮poll() (拉取数据之间的最大时间延迟),如果此超时时间期满之前poll()没有被再次调用,则消费者被视为失败,并且分组将触发rebalance,以便将分区重新分配给别的成员。
如果,再两次poll之间需要添加过多复杂的,耗时的逻辑,需要延长这个时间,默认值:300s。
max.poll.records:消费者一次poll()操作,能够获取的最大数据量,增加这个参数值,会增加一次性拉取数据的数据量,确保拉取数据的时间,至少在max.poll.interval.ms规定的范围之内,默认值:500。
2.3 Simpleconsumer参数调优
simpleconsumer在初始化阶段需要传一个fetchsize的参数,比如:consumer=new SimpleConsumer(leaderBroker,a_port,100000,64*1024,clientName)中64*1024,该参数表示simpleconsumer一次性获取的数据大小,如果该值过大则可能会导致request时间过长,使用过程中应该降低这个值,保证消费频率。
使用SimpleConsumer的核心需求是:多线程消费单个分区,以达到提升性能的要求,如果没有这样需求,不建议使用这个这种消费方式
3.消费端频繁rebalance导致性能下降调优:
3.1因业务处理能力不足导致的:
session.timout.ms控制心跳超时时间。
heartbeat.interval.ms控制心跳发送频率,建议该值不超过session.timout.ms的三分之一。
max.poll.interval.ms控制每次poll的间隔,时间=获取数据的时间+处理数据的时间,如果max.poll.records设定的值在max.poll.interval.ms指定的时间内没有处理完成会触发rebalance,这里给出一个相对较为合理的配置,建议在预计的处理时间的基础上再加1分钟。
max.poll.records 每个批次处理的数据条数,默认为500条。如果处理能力较低,建议可以减小这个值。
3.2 非正常消费者频繁的访问kafka集群导致频繁rebalance:
收集kafka-request.log,查看异常的topic有哪些客户端节点在消费,cat kafka-request.* | grep “topic=topicName” | grep “apikey=FETCH” | awk –F’from connection’ ‘{print $2}’ | awk –F’;’ ‘{print $1}’ | awk –F’-’ ‘{print $2}’ | awk –F’:’ ‘{print $1}’ | sort | uniq –c | sort -nr ,找出不应该产生消费行为的节点,停止异常节点上消费者
4.版本引发性能下降优化
FI 8.0.2版本之前kafka SimpleAclAuthorizer鉴权异常导致性能下降,8.0.2版本在使用非安全端口(21005或者9092端口)时会出现集群性能下降的问题,表现:kafka-root.log中出现大量ExitcodeException:id:Default#Principal:no such user报错。
解决办法:升级到FI 8023以上版本。
临时规避办法:业务侧使用21007端口访问kafka,去掉鉴权插件即allow.everyone.if.no.acl.found=true,将以下kafka服务端配置置为空:authorizer.class.name=。
5.FI 6513~6516版本的内核问题引发的性能异常
6513版本在kafka引入社区的的lazy index功能后,在新的segment创建的过程中可能会导致并发创建失败的问题,常见的报错(server.log中)如以下两种类型:
(1)java.lang.InternalError: a fault occurred in a recent unsafe memory access operation in compiled Java code;
(2)java.lang.IllegalArgumentException: requirement failed: Attempt to append to a full index;
当出现以上两种类型的报错的时候可以断定是版本问题导致,问题预警如:https://support.huawei.com/enterprise/zh/bulletins-product/ENEWS2000007844;
解决方案:升级到6517版本以上版本或者打入紧急补丁:https://support.huawei.com/enterprise/zh/cloud-computing/fusioninsight-hd-pid-21110924/software/251482609?idAbsPath=fixnode01%7C7919749%7C7941815%7C19942925%7C250430185%7C21110924;
临时规避方案:重启异常的broker实例。
5种kafka消费端性能优化方法的更多相关文章
- HBase性能优化方法总结(转)
本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,这里涉及的不多,这部分可以参考:淘宝Ken Wu同学的博客. 1. 表的设计 1.1 Pr ...
- .NET 性能优化方法总结==转
.NET 性能优化方法总结 目录 目录 1. C#语言方面... 4 1.1 垃圾回收... 4 1.1.1 避免不必要的对象创建... 4 1.1.2 不要使用空析构函数 ★... 4 1.1.3 ...
- HBase性能优化方法总结(转)
原文链接:HBase性能优化方法总结(一):表的设计 本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. ...
- HBase性能优化方法总结(二):写表操作
转自:http://www.cnblogs.com/panfeng412/archive/2012/03/08/hbase-performance-tuning-section2.html 本文主要是 ...
- HBase性能优化方法总结(三):读表操作
本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. 下面是本文总结的第三部分内容:读表操作相关的优化方法 ...
- 【转】10种简单的Java性能优化
10种简单的Java性能优化 2015/06/23 | 分类: 基础技术 | 14 条评论 | 标签: 性能优化 分享到: 本文由 ImportNew - 一直在路上 翻译自 jaxenter.欢迎加 ...
- HBase性能优化方法总结(三):读表操作(转)
转自:http://www.cnblogs.com/panfeng412/archive/2012/03/08/hbase-performance-tuning-section3.html 本文主要是 ...
- Linux 下网络性能优化方法简析
概述 对于网络的行为,可以简单划分为 3 条路径:1) 发送路径,2) 转发路径,3) 接收路径,而网络性能的优化则可基于这 3 条路径来考虑.由于数据包的转发一般是具备路由功能的设备所关注,在本文中 ...
- (摘录)26个ASP.NET常用性能优化方法
数据库访问性能优化 数据库的连接和关闭 访问数据库资源需要创建连接.打开连接和关闭连接几个操作.这些过程需要多次与数据库交换信息以通过身份验证,比较耗费服务器资源. ASP.NET中提供了连接池(Co ...
随机推荐
- 实现一个Prometheus exporter
Prometheus 官方和社区提供了非常多的exporter,涵盖数据库.中间件.OS.存储.硬件设备等,具体可查看exporters.exporterhub.io,通过这些 exporter 基本 ...
- 广东省30m二级分类土地利用数据(矢量)
数据下载链接:百度云下载链接 广东省,地处中国大陆最南部,属于东亚季风区,从北向南分别为中亚热带.南亚热带和热带气候,是中国光.热和水资源最丰富的地区之一.主要河系为珠江的西江.东江.北江和三角洲水 ...
- SLSA 框架与软件供应链安全防护
随着软件供应链攻击浪潮愈演愈烈,Google 发布了一系列指南来确保软件包的完整性,旨在防止影响软件供应链的未经授权的代码修改.新的 Google SLSA 框架(Supply-chain Level ...
- .NET自定义认证虽然简单,但好用
前言 有这样一种场景,就是新项目已经集成了认证中心,或者是都用了统一的认证方式(比如现在常用的JWT),这样对于项目之间的对接就显得比较方便,至少在认证这块还是能减少一些工作量的.但当上线的老项目需要 ...
- C++记录一
题目一: [描述] 比较两个整数之间的大于.小于.等于.不等于关系. [输入] 输入在一行中给出2个整数a和b. [输出] 分行输出整数a和b之间的大于.小于.等于.不等于关系. [输入示例] 5 3 ...
- 分享一个基于Abp Vnext开发的API网关项目
这个项目起源于去年公司相要尝试用微服务构建项目,在网关的技术选型中,我们原本确认了ApiSix 网关,如果需要写网关插件需要基于Lua脚本去写,我和另外一个同事当时基于这个写了一个简单的插件,但是开发 ...
- 蔚来杯2022牛客暑期多校训练营5 ABCDFGHK
比赛链接 A 题解 知识点:图论,dp. 暴力建图,连接所有点的双向通路,除了原点是单向的,并且把路径长度作为权值. 随后,从原点出发(\(f[0] = 0\),其他点负无穷,保证从原点出发),按照权 ...
- mybatis 02: 添加并简单使用mybatis
三层架构 项目开发时,遵循的一种设计模式,分为三层 界面层:用来接收客户端输入的数据,调用业务逻辑层进行功能处理,返回结果给客户端 过去的servlet就完成了界面层的功能(但是他做的更多) 业务逻辑 ...
- 解决国内不能访问github的问题
问题 最近访问GitHub总是不稳定,经常连不上, 出各种错误(OpenSSL SSL_read: Connection was reset, errno 10054, Connection refu ...
- Taurus.MVC WebAPI 入门开发教程5:控制器安全校验属性【HttpGet、HttpPost】【Ack】【Token】【MicroService】。
系列目录 1.Taurus.MVC WebAPI 入门开发教程1:框架下载环境配置与运行. 2.Taurus.MVC WebAPI 入门开发教程2:添加控制器输出Hello World. 3.Tau ...