最新 x86_64 系统调用入口分析 (基于5.7.0)

整体概览

最近的工作涉及系统调用入口,但网上的一些分析都比较老了,这里把自己的分析过程记录一下,仅供参考。

x86_64位系统调用使用 SYSCALL 指令进入内核空间,使CPU切换到ring 0。SYSCALL 指令主要工作为从MSR寄存器加载CS/SS,以及系统调用入口(entry_SYSCALL_64),从而进入系统调用处理流程。

MSR寄存器相关这里不再介绍,需要相关知识的指路 寄存器总结 以及

Model-specific register

SYSCALL 指令

IF (CS.L ≠ 1 ) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)
THEN #UD;
FI;
RCX ← RIP; (* Will contain address of next instruction *)
RIP ← IA32_LSTAR;
R11 ← RFLAGS;
RFLAGS ← RFLAGS AND NOT(IA32_FMASK);
CS.Selector ← IA32_STAR[47:32] AND FFFCH (* Operating system provides CS; RPL forced to 0 *)
(* Set rest of CS to a fixed value *)
CS.Base ← 0;
(* Flat segment *)
CS.Limit ← FFFFFH;
(* With 4-KByte granularity, implies a 4-GByte limit *)
CS.Type ← 11;
(* Execute/read code, accessed *)
CS.S ← 1;
CS.DPL ← 0;
CS.P ← 1;
CS.L ← 1;
(* Entry is to 64-bit mode *)
CS.D ← 0;
(* Required if CS.L = 1 *)
CS.G ← 1;
(* 4-KByte granularity *)
CPL ← 0;
SS.Selector ← IA32_STAR[47:32] + 8;
(* SS just above CS *)
(* Set rest of SS to a fixed value *)
SS.Base ← 0;
(* Flat segment *)
SS.Limit ← FFFFFH;
(* With 4-KByte granularity, implies a 4-GByte limit *)
SS.Type ← 3;
(* Read/write data, accessed *)
SS.S ← 1;
SS.DPL ← 0;
SS.P ← 1;
SS.B ← 1;
(* 32-bit stack segment *)
SS.G ← 1;
(* 4-KByte granularity *)
(代码引自 https://www.felixcloutier.com/x86/syscall)

这里主要做了三个工作:

  • 将RIP保存到RCX寄存器,即将SYSCALL指令下一条指令地址保存到RCX,后续用到。
  • 从 IA32_LSTAR MSR 寄存器加载系统调用入口地址。64 位寄存器名为MSR_LSTAR。
  • 从 IA32_STAR MSR 寄存器47-32到加载CS/SS段。64 位寄存器名为 MSR_STAR,其在内核启动过程中初始化。

MSR寄存器初始化源码点这

核心为:

wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);

入口地址

接下来就是进入 entry_SYSCALL_64处理流程,源码在这

但是这里有一个问题:在较新版内核中,都已支持 PTI 机制,用户态与内核态使用不同页表,而这里 entry_SYSCALL_64 已经属于内核代码,而我们仔细观察entry_SYSCALL_64 实现,在第四行才切换内核页表。想要 entry_SYSCALL_64 能被执行,就需要 cpu_entry_area 的作用了。

SYM_CODE_START(entry_SYSCALL_64)
UNWIND_HINT_EMPTY
/* * Interrupts are off on entry. * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON, * it is too small to ever cause noticeable irq latency. */ swapgs
/* tss.sp2 is scratch space. */
movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp

cpu_entry_area 包括了CPU进入内核需要的所有数据/代码,会被映射到用户态页表。了解点着,但是要注意较新版本cpu_entry_area已经不包含其中的 a set of trampolines;至于为什么看这

那又是怎么实现?

翻来覆去,终于在 pti 初始化处找到了关键点,其实现为

/* * Clone the populated PMDs of the entry and irqentry text and force it RO. */
static void pti_clone_entry_text(void){
pti_clone_pgtable((unsigned long) __entry_text_start,
(unsigned long) __irqentry_text_end,
PTI_CLONE_PMD);}

其将 __entry_text_start 开头的地址复制,而这又与 entry_SYSCALL_64 有什么关系?我们继续往下找

#define ENTRY_TEXT							\
ALIGN_FUNCTION(); \
__entry_text_start = .; \
*(.entry.text) \
__entry_text_end = .;

而再看 entry_SYSCALL_64 定义的文件头部

.code64
.section .entry.text, "ax"

所以这里就会把 entry_SYSCALL_64 等一众函数地址拷贝到用户页表,从而实现可访问。具体定义展开这里就不进行了。

继续执行

回到 entry_SYSCALL_64,我们跳过一系列处理,可以看到一个关键点

call    do_syscall_64

很显然了,接下来就是执行 do_syscall_64 了。后面就是常规操作了。

最新 x86_64 系统调用入口分析 (基于 5.7.0)的更多相关文章

  1. springmvc工作原理以及源码分析(基于spring3.1.0)

    springmvc是一个基于spring的web框架.本篇文章对它的工作原理以及源码进行深入分析. 一.springmvc请求处理流程 二.springmvc的工作机制 三.springmvc核心源码 ...

  2. 开源GUI-Microwindows之程序入口分析

    **************************************************************************************************** ...

  3. Android 短信模块分析(三) MMS入口分析

    MMS入口分析:      在Mms中最重要的两个Activity,一个是conversationList(短信列表) ,另一个就是ComposeMessageActivity(单个对话或者短信).每 ...

  4. 分析Linux内核5.0系统调用处理过程

    学号: 363 本实验来源 https://github.com/mengning/linuxkernel/ 一.实验要求 1.编译内核5.02.qemu -kernel linux-5.0.1/ar ...

  5. Socket与系统调用深度分析

    学习一下对Socket与系统调用的分析分析 一.介绍 我们都知道高级语言的网络编程最终的实现都是调用了系统的Socket API编程接口,在操作系统提供的socket系统接口之上可以建立不同端口之间的 ...

  6. Spring IoC 源码分析 (基于注解) 之 包扫描

    在上篇文章Spring IoC 源码分析 (基于注解) 一我们分析到,我们通过AnnotationConfigApplicationContext类传入一个包路径启动Spring之后,会首先初始化包扫 ...

  7. ceph-csi源码分析(3)-rbd driver-服务入口分析

    更多ceph-csi其他源码分析,请查看下面这篇博文:kubernetes ceph-csi分析目录导航 ceph-csi源码分析(3)-rbd driver-服务入口分析 当ceph-csi组件启动 ...

  8. Spring Ioc源码分析系列--Ioc源码入口分析

    Spring Ioc源码分析系列--Ioc源码入口分析 本系列文章代码基于Spring Framework 5.2.x 前言 上一篇文章Spring Ioc源码分析系列--Ioc的基础知识准备介绍了I ...

  9. AtomicInteger源码分析——基于CAS的乐观锁实现

    AtomicInteger源码分析——基于CAS的乐观锁实现 1. 悲观锁与乐观锁 我们都知道,cpu是时分复用的,也就是把cpu的时间片,分配给不同的thread/process轮流执行,时间片与时 ...

随机推荐

  1. 用 Java 写一个线程安全的单例模式(Singleton)?

    请参考答案中的示例代码,这里面一步一步教你创建一个线程安全的 Java 单例类.当我们说线程安全时,意思是即使初始化是在多线程环境中,仍然能保证单个实例.Java 中,使用枚举作为单例类是最简单的方式 ...

  2. homebrew 安装nginx+php+mysql

    转:https://juejin.im/post/5c8fb28a6fb9a07103548318 brew search nginxbrew install nginx /usr/local/etc ...

  3. kafka producer的batch.size和linger.ms

    1.问题 batch.size和linger.ms是对kafka producer性能影响比较大的两个参数.batch.size是producer批量发送的基本单位,默认是16384Bytes,即16 ...

  4. 什么是持续集成(CI)?

    持续集成(CI)是每次团队成员提交版本控制更改时自动构建和测试代码的过程. 这鼓励开发人员通过在每个小任务完成后将更改合并到共享版本控制存储库来共 享代码和单元测试.

  5. Clickhouse 用户自定义外部函数

    写在前面 Clickhouse 从 21.11 版本开始,除了提供类似SqlServer.MySQL CREATE FUNCTION 的自定义函数之外,还有一个用户自定义函数(UDF),与其说是&qu ...

  6. 什么是jsp?jsp的内置对象有哪些?

    这里是修真院前端小课堂,每篇分享文从 [背景介绍][知识剖析][常见问题][解决方案][编码实战][扩展思考][更多讨论][参考文献] 八个方面深度解析前端知识/技能,本篇分享的是: [什么是jsp? ...

  7. 用jq实现移动端滑动轮播以及定时轮播效果

    Html的代码: <div class="carousel_img"> <div class="car_img" style="ba ...

  8. CSS - 定位属性position使用详解(static、relative、fixed、absolute)

    position 属性介绍 (1)position 属性自 CSS2 起就有了,该属性规定元素的定位类型.所有主流浏览器都支持 position 属性. (2)position 的可选值有四个:sta ...

  9. ES6-11学习笔记--箭头函数

    1.this指向定义时所在的对象,而不是调用时所在的对象 2.不可以当做构造函数 3.不可以使用arguments对象   ES5中定义函数的两种方式: function fn1() { consol ...

  10. 前端面试题整理——手写bind函数

    var arr = [1,2,3,4,5] console.log(arr.slice(1,4)) console.log(arr) Function.prototype.bind1 = functi ...