这道题还有点意思。

路径要求是一个回文串,回文串立马枚举中点。中点只可能在对角线上。

枚举对角线上的一个点,然后两边的路径必须完全相同。

既然路径上的字符必须完全相同,那么每个前缀也必须完全相同。

考虑 DP。设 \(dp[x1][y1][x2][y2]\) 表示左上方的路径终点在 \((x1,y1)\),右下方的路径终点在 \((x2,y2)\)。

这状态看上去就可以优化,\(dp[k][x1][x2]\),表示 \((x1,k-x1)\) 和 \((x2,k-x2)\)。

然后随便转移一下就差不多了吧。

复杂度 \(O(n^3)\),可以通过。

需要注意滚动数组。

#include<cstdio>
typedef unsigned ui;
const ui M=505,mod=1e9+7;
ui n,dp[2][M][M];char q[M][M],p[M][M];
signed main(){
ui ans(0);
scanf("%u",&n);
for(ui i=1;i<=n;++i)scanf("%s",q[i]+1);
for(ui i=1;i<=n;++i)for(ui j=1;j<=n;++j)p[i][j]=q[n-i+1][n-j+1];
if(q[1][1]!=p[1][1])return printf("0"),0;
dp[0][1][1]=1;
for(ui now(1),lst(0),i=3;i<=n+1;now^=lst^=now^=lst,++i){
for(ui x1=1;x1<i;++x1)for(ui x2=1;x2<i;++x2)dp[now][x1][x2]=0;
for(ui x1=1;x1<i;++x1){
for(ui x2=1;x2<i;++x2)if(q[x1][i-x1]==p[x2][i-x2]){
dp[now][x1][x2]=(dp[lst][x1][x2]+dp[lst][x1-1][x2]+dp[lst][x1][x2-1]+dp[lst][x1-1][x2-1])%mod;
}
}
}
for(ui i=1;i<=n;++i)ans=(ans+dp[n+1&1][i][n+1-i])%mod;
printf("%u",ans);
}

LGP3126题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. WSL2设置局域网网访问

    标签: wsl2  局域网  docker  WSL2设置内网访问 1.先找到虚拟机的ip 2.设置端口转发(需要管理员权限运行powershell) 3.删除端口转发 4.配置入站规则. 1.先找到 ...

  2. 实例15_C语言绘制万年历

    实例说明:

  3. 有手就行2——持续集成环境—Jenkins安装、插件、用户权限及凭证管理

    有手就行2--持续集成环境-Jenkins安装.插件.权限及凭证管理 持续集成环境(1)-Jenkins安装 持续集成环境(2)-Jenkins插件管理 持续集成环境(3)-Jenkins用户权限管理 ...

  4. Docker consul的容器服务更新与发现

    Docker consul的容器服务更新与发现 目录 Docker consul的容器服务更新与发现 一.Consul简介 1. 服务注册与发现 2. consul概述 3. consul的两种模式 ...

  5. 经常使用的系统类Math、Arrays、System、BigInteger和BigDecimal以及日期类,时间戳

    一.Math 常用类: //看看Math常用的方法(静态方法)//1.abs绝对值int abs = Math . abs(-9);System. out . printLn(abs);//9//2. ...

  6. Solution -「CodeChef JUMP」Jump Mission

    \(\mathcal{Description}\)   Link.   有 \(n\) 个编号 \(1\sim n\) 的格子排成一排,并有三个权值序列 \(\{a_n\},\{h_n\},\{p_n ...

  7. Solution -「LOJ #6029」「雅礼集训 2017」市场

    \(\mathcal{Description}\)   Link.   维护序列 \(\lang a_n\rang\),支持 \(q\) 次如下操作: 区间加法: 区间下取整除法: 区间求最小值: 区 ...

  8. 我们一起来学Shell - shell的数组

    文章目录 什么是数组 数组中常用变量 数组的定义 小括号定义数组变量 小括号加键值对定义数组变量 分别定义数组变量 动态地定义数组变量 数组赋值的切片 遍历数组 关联数组 我们一起来学Shell - ...

  9. Spring Boot AOP 扫盲,实现接口访问的统一日志记录

    AOP 是 Spring 体系中非常重要的两个概念之一(另外一个是 IoC),今天这篇文章就来带大家通过实战的方式,在编程猫 SpringBoot 项目中使用 AOP 技术为 controller 层 ...

  10. kali linux安装nessus

    详细介绍在 Kali 中安装 Nessus 的详细过程步骤以及插件下载失败解决方法. 实验环境 安装过程 下载 Nessus 安装 Nessus 启动 Nessus 获取激活码 登陆 web 界面 N ...