Volcano成Spark默认batch调度器
摘要:对于Spark用户而言,借助Volcano提供的批量调度、细粒度资源管理等功能,可以更便捷的从Hadoop迁移到Kubernetes,同时大幅提升大规模数据分析业务的性能。
2022年6月16日,Apache Spark 3.3版本正式发布,其中《Support Customized Kubernetes Schedulers》作为Spark 3.3版本的重点(Highlight)特性,其关键能力是从框架层面支持定制化的Kubernetes度器,并且将Volcano作为Spark on Kubernetes的默认batch调度器。这也是Apache Spark社区官方支持Volcano的第一个版本。对于Spark用户而言,借助Volcano提供的批量调度、细粒度资源管理等功能,可以更便捷的从Hadoop迁移到Kubernetes,同时大幅提升大规模数据分析业务的性能。
华为牵头发起,主流厂商协作
该特性由华为牵头发起,由来自华为、Apple、Cloudera、Netflix、Databricks等公司的开发者共同协作完成。通过在Apache Spark支持自定义调度能力,允许用户插件化使用各种第三方自定义调度。
Spark + Volcano:更完善的调度能力
Spark的资源管理平台正在向Kubernetes演进,Apache Spark现有架构下,Job的单主、多从节点的分离调度,导致了Spark driver节点资源死锁问题,尤其是在资源紧张的情况下,会经常出现此类问题。同时,由于原生Kubernetes的调度能力受限,也无法完成Job粒度诸如队列调度、公平调度、资源预留等功能。
Volcano作为CNCF社区首个云原生批量计算,于2019年6月在上海KubeCon正式开源,并在2020年4月成为CNCF官方项目。2022年4月,Volcano正式晋级为CNCF孵化项目。Volcano社区开源以来,在人工智能、大数据、基因测序、转码、渲染等海量数据计算和分析场景得到快速应用,并构建起完善的上下游生态,目前腾讯、爱奇艺、小红书、蘑菇街、唯品会、鹏程实验室、锐天投资等企业均将Volcano应用于生产环境。
Spark 官方支持Volcano将会进一步加速大数据平台迁移到Kubernetes的进程,帮助Spark用户应对以下常见的批量调度场景。
常见调度场景:
作业级的公平调度 (Job-based Fair-share)
当运行多个弹性作业(如流媒体分析)时,需要公平地为每个作业分配资源,以满足多个作业竞争附加资源时的SLA/QoS要求。在最坏的情况下,单个作业可能会启动大量的pod资源利用率低,从而阻止其他作业由于资源不足而无法运行。为了避免分配过小(例如,为每个作业启动一个Pod),Volcano允许弹性作业定义应该启动的Pod的最小可用数量。 超过指定的最小可用量的任何pod都将公平地与其他作业共享集群资源。
队列 (Queue)
队列还广泛用于共享弹性工作负载和批处理工作负载的资源。队列的主要目的是:
- 在不同的“租户”或资源池之间共享资源,例如将每一个部门映射到一个队列,实现多个部门通过队列的权重,动态共享集群的资源。
- 为不同的“租户”或资源池支持不同的调度策略或算法,如FIFO、Fairness、Priority等
队列被实现为集群范围的CRD,和namespace实现了解耦。这允许将在不同namespace中创建的作业放置在一个共享队列中。队列还提供了min和max,min是队列的最小保障资源,任何时刻该队列有紧急任务提上来都保证有min资源可用,max是队列资源使用上限。min和max之间的资源如果闲置,允许共享给其他队列的任务来提升整体的资源利用率。
面向用户的, 跨队列的公平调度 (Namespace-based fair-share Cross Queue)
在队列中,每个作业在调度循环期间有几乎相等的调度机会,这意味着拥有更多作业的用户有更大的机会安排他们的作业,这对其他用户不公平。 例如,有一个队列包含少量资源,有10个pod属于UserA,1000个pod属于UserB。在这种情况下,UserA的pod被绑定到节点的概率较小。
为了平衡同一队列中用户之间的资源使用,需要更细粒度的策略。考虑到Kubernetes中的多用户模型,使用名称空间来区分不同的用户, 每个命名空间都将配置一个权重,作为控制其资源使用优先级的手段。
抢占 (Preemption & Reclaim)
通过公平分享来支持借贷模型,一些作业/队列在空闲时会过度使用资源。但是,如果有任何进一步的资源请求,资源“所有者”将“收回”。 资源可以在队列或作业之间共享:回收用于队列之间的资源平衡,抢占用于作业之间的资源平衡。
最小资源预留(minimal resource reservation)
运行拥有多个任务角色的作业时(如Spark)时,Spark driver pod会先创建并运行,然后请求Kube-apiserver创建Spark executor pod,在资源紧张或高并发的场景,时常会出现大量作业提交导致所有可用资源被Spark driver pod耗尽,Spark executor无法获取资源,最终所有Spark作业无法正常运行。为解决此问题,用户为Spark driver pod 和 executor pod创建专有节点进行静态划分,而这带来了资源碎片、利用率低下的问题。Volcano提供的minimal resource reservation 允许为每个Spark作业预留资源,防止Spark executor无法获取资源而导致的死锁问题,相比于静态划分的作法,性能提升30%+。
预留与回填 (Reservation & Backfill)
当一个请求大量资源的“巨大”作业提交给Kubernetes时,当有许多小作业在管道中时,该作业可能会饿死,并最终根据当前的调度策略/算法被杀死。为了避免饥饿, 应该有条件地为作业保留资源,例如超时。当资源被保留时,它们可能会处于空闲和未使用状态。为了提高资源利用率,调度程序将有条件地将“较小”作业回填到那些保留资源中。 保留和回填都是根据插件的反馈触发的:Volcano供了几个回调接口,供开发人员或用户决定哪些作业应该被填充或保留。
未来发展
随着场景的日益丰富,Volcano也在不断的添加新的算法,同时,相应的接口也在不断的完善,方便用户扩展并自定义相应的算法。另一方面,社区也在持续的扩大技术版图支持新的场景如跨云跨集群调度、混部、FinOps、智能弹性调度、细粒度资源管理等。
近期我们还会对Spark 3.3中Volcano 带来的批量调度能力进行详细技术解读,敬请期待。添加Volcano小助手k8s2222,进入Volcano社区交流群,大咖在侧,定期分享。
Spark 3.3 release notes: https://spark.apache.org/releases/spark-release-3-3-0.html
Volcano官网:https://volcano.sh/zh/docs/
Github : https://github.com/volcano-sh/volcano
Volcano成Spark默认batch调度器的更多相关文章
- spark的task调度器(FAIR公平调度算法)
FAIR 调度策略的树结构如下图所示: FAIR 调度策略内存结构 FAIR 模式中有一个 rootPool 和多个子 Pool, 各个子 Pool 中存储着所有待分配的 TaskSetMagage ...
- 转: 调整 Linux I/O 调度器优化系统性能
转自:https://www.ibm.com/developerworks/cn/linux/l-lo-io-scheduler-optimize-performance/index.html 调整 ...
- MapReduce调度器
1. 先进先出(FIFO)调度器 先进先出调度器是Hadoop的默认调度器.就像这个名字所隐含的那样,这种调度器就是用简单按照“先到先得”的算法来调度任务的.例如,作业A和作业B被先后提交.那么在执行 ...
- Kubernetes 学习20调度器,预选策略及优选函数
一.概述 1.k8s集群中能运行pod资源的其实就是我们所谓的节点,也称为工作节点.master从本质上来讲,他其实是运行整个集群的控制平面组件的比如apiserver,scheal,controlm ...
- kubernetes 调度器
调度器 kube-scheduler 是 kubernetes 的核心组件之一,主要负责整个集群资源的调度功能,根据特定的调度算法和策略,将 Pod 调度到最优的工作节点上面去,从而更加合理.更加充分 ...
- Hadoop的调度器总结
Hadoop的调度器总结 随着MapReduce的流行,其开源实现Hadoop也变得越来越受推崇.在Hadoop系统中,有一个组件非常重要,那就是调度器,它的作用是将系统中空闲的资源按一定策略分配给作 ...
- JStorm与Storm源码分析(三)--Scheduler,调度器
Scheduler作为Storm的调度器,负责为Topology分配可用资源. Storm提供了IScheduler接口,用户可以通过实现该接口来自定义Scheduler. 其定义如下: public ...
- Kubernetes集群调度器原理剖析及思考
简述 云环境或者计算仓库级别(将整个数据中心当做单个计算池)的集群管理系统通常会定义出工作负载的规范,并使用调度器将工作负载放置到集群恰当的位置.好的调度器可以让集群的工作处理更高效,同时提高资源利用 ...
- RxJS——调度器(Scheduler)
调度器 什么是调度器?调度器是当开始订阅时,控制通知推送的.它由三个部分组成. 调度是数据结构.它知道怎样在优先级或其他标准去存储和排队运行的任务 调度器是一个执行上下文.它表示任务在何时何地执行(例 ...
随机推荐
- String类为什么被设计成不可变类
1.享元模式: 1.共享元素模式,也就是说:一个系统中如果有多处用到了相同的一个元素,那么我们应该只存储一份此元素,而让所有地方都引用这一个元素. 2.Java中String就是根据享元模式设计的,而 ...
- 好用的表单验证工具 vuelidate
Vue validation(表单验证)--vuelidate 表单是用户那里收集的数据的工具.如果它没有收集到你需要的数据,或者收集到的数据不对,那么你的表单就没有达到它的目的.这就是为什么我们需要 ...
- Promise了解
Promise是一个构造函数,excutor是他的执行函数,同时也是构造函数的参数. new Promise(excutor) excutor有两个参数(resolve,reject) Promise ...
- 2021.07.23 P2474 天平(差分约束)
2021.07.23 P2474 天平(差分约束) [P2474 SCOI2008]天平 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 已知A,B和每两个点点权,求点权i, ...
- 数据建模软件Chiner,颜值与实用性并存
目录 一.chiner介绍 二.值得关注的功能点 2.1. 兼容各种格式的数据建模文件 2.2. 支持多数据库.代码生成 2.3. 支持逻辑视图与物理视图设计 2.4. 自动生成数据库文档 三.总结 ...
- 6.1 SHELL脚本
6.1 SHELL脚本元素 第一行的脚本声明(#!)用来告诉系统使用哪种Shell解释器来执行该脚本: 第二行的注释信息(#)是对脚本功能和某些命令的介绍信息,使得自己或他人在日后看到这个脚本内容时, ...
- Typora使用手册(基础)
Typora使用手册 第一步,你首先得拥有一个Typora,可通过(https://typoraio.cn/)该网址下载. 第二步,安装并打开. 第三步,让我们开始认识并设置自己的Typora吧~ 什 ...
- 集成算法(Bagging & Boosting)
用多种分类器一起完成同一份任务 Bagging策略(有放回的,随机的,子集大小一样的,m个训练集用同一个模型) Boosting-提升策略(串联) AdaBoost算法
- Django/SQL server 配置实现(附下载安装)
连接方案1: conn = pymssql.connect(host='127.0.0.1', port=1433, user='sa', password='password', database= ...
- epoll 函数解析
本文参考社长的 TinyWebServer 庖丁解牛 epoll 常用API epoll_create 函数 #include <sys/epoll.h> int epoll_create ...