目标检测之YOLO系列

YOLOV1:

YOLOV2:

YOLOV2总结:

  • Better
  1. Batch Normalization
BN可以提升模型收敛速度,而且可以起到一定正则化效果,降低模型的过拟合
YOLOv2使用BN,不使用dropout
  1. High Resolution Classifier
将分辨率由224*224(ImageNet分类尺寸)增加至448*448
  1. Convolutional With Anchor Boxes
使用先验框提高召回率
  1. Dimension Clusters
使用聚类算法生成先验框
  • Faster
  1. 使用Darknet-19主干网络

YOLOV3:

YOLOV3总结:

  • 数据处理部分
  • Backbones部分
DarkNet53, 网络结构如下:

  • Neck部分
FPN
  • Head部分
见网络结构图
  • 激活函数
LeakyReLU

  • 损失函数
目标类别损失/目标置信度损失 --> 二值交叉熵损失(Binary Cross Entyopy)
目标定位损失 --> Sum of Squared Error Loss(只有正样本才有目标定位损失)
L(loc) = sum(sigmod(tx-gx)**2 + sigmod(ty-gy)**2 + (tw-gw)**2 + (th-gh)**2)
  • 其他

    在yolov3中,关于预测的目标中心点坐标计算公式是:

    见图:

YOLOV4:

YOLOV4总结:

  • 数据处理部分
1. Mosaic data augmentation
2. CutMix data augmentation
  • Backbones部分
CSPDarknet53
  • Neck部分
SPP
PAN
  • Head部分
和YOLOv3的head部分一样
  • 正负样本分配部分
1. 在yolov3中一个GT都只分配一个Anchor, 在ylov4中(以及u版的yolov3-spp)中一个gt可以同时分配给多个anchor

2. 在Bubbliiiing版本的代码中可以描述如下:(3个head分别对应anchor为[0,1, 2, 3, 4, 5, 6, 7, 8])

  a: anchor有9个,gt有10个  每个anchor和gt进行左上角对齐并且计算iou从大到小排序(shape:[10,9])

  b: 例如第一个gt算出来的最大iou的anchor的index=4,但是该层的anchor索引是6,7,8,所以该gt不属于该head

  c: 如果计算出该gt与anchor对应的index=6: 将该gt缩放到该head的大小,该gt的中心点落在网格中的点. 该网格中的
点包含的信息有(x,y,w,h,conf,cls). 然后和预测出来的进行对比和计算(在该版本中计算方式同yolov3) d: 使用sigmod激活函数的取值范围是[0, 1],要想取值0,1那么预测值需要取得无穷(在后续的yolov5中有改进)
  • 损失函数部分
分类损失:
定位损失: CIOU,ciou的计算方式如下:

  • 激活函数
Mish激活函数
  • 其他
Class label smoothing(标签平滑策略)
学习率余弦退火衰减

YOLOV5:

YOLOv5总结:

  • 数据处理部分
yolov5提供的数据增强技术有:
1. Mosaic
2. Copy paste (需要segments数据)
3. Random affine 仿射变换 作者只使用了Scale和Translation(缩放和平移)
4. MixUp
  • Backbones部分
Backbone: new CSP-Darknet53(使用了FCOS模块后面使用6*6大小的卷积替换)
  • Neck部分
spp, pan
  • head:
yolov3 head
  • 损失函数
Classes loss,分类损失,采用的是BCE loss,注意只计算正样本的分类损失
Objectness loss,obj损失,采用的依然是BCE loss
Location loss,定位损失,采用的是CIoU loss
  • 其他
消除网格在断点等取不到值的情况
bx = (2*sigmod(tx) - 0.5) + cx
by = (2*sigmod(ty) - 0.5) + cy
那么就将原来的取值范围有[0, 1]变化到[-0.5, 1.5],也为后面使用相邻的网格预测点作为正样本奠定基础
同时:
bw = pw * (28sigmod(tw))**2
bh = ph * (28sigmod(th))**2
防止梯度爆炸,将范围调整到(0,4)也为后面的正负样本分配奠定基础

YOLOX:

除了YOLOX,yolov1属于anchor-free目标检测方法外,其他的yolo系列都属于anchor-base方法

YOLOX总结

  • 数据增强部分
Mosaic
Mixup
  • Backbone
CSPDarknet53
  • Neck部分
spp + pan
  • Head部分
使用decoupled head(将分类头和回归头分开)

目标检测复习之YOLO系列的更多相关文章

  1. 目标检测复习之Anchor Free系列

    目标检测之Anchor Free系列 CenterNet(Object as point) 见之前的过的博客 CenterNet笔记 YOLOX 见之前目标检测复习之YOLO系列总结 YOLOX笔记 ...

  2. 深度学习与CV教程(12) | 目标检测 (两阶段,R-CNN系列)

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  3. 目标检测复习之Faster RCNN系列

    目标检测之faster rcnn系列 paper blogs1: 一文读懂Faster RCNN Faster RCNN理论合集 code: mmdetection Faster rcnn总结: 网络 ...

  4. (六)目标检测算法之YOLO

    系列文章链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...

  5. 目标检测复习之Loss Functions 总结

    Loss Functions 总结 损失函数分类: 回归损失函数(Regression loss), 分类损失函数(Classification loss) Regression loss funct ...

  6. 深度学习与CV教程(13) | 目标检测 (SSD,YOLO系列)

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  7. 第三十五节,目标检测之YOLO算法详解

    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object de ...

  8. (七)目标检测算法之SSD

    系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...

  9. VOC数据集 目标检测

    最近在做与目标检测模型相关的工作,很多都要求VOC格式的数据集. PASCAL VOC挑战赛 (The PASCAL Visual Object Classes )是一个世界级的计算机视觉挑战赛, P ...

随机推荐

  1. Web 开发中 Blob 与 FileAPI 使用简述

    本文节选自 Awesome CheatSheet/DOM CheatSheet,主要是对 DOM 操作中常见的 Blob.File API 相关概念进行简要描述. Web 开发中 Blob 与 Fil ...

  2. Javascript Symbol 隐匿的未来之星

    ES6中基础类型增加到了7种,比上一个版本多了一个Symbol,貌似出现了很长时间,但却因没有使用场景,一直当作一个概念层来理解它,我想,用它的最好的方式,还是要主动的去深入了解它吧,所以我从基础部分 ...

  3. CSS样式写在JSP代码中的几种方法

    1.行内样式. 可以直接把css代码写在现有的HTML标签元素的开始标签里面,并且css样式代码要写在style=" "双引号中才可以, 如: <p style=" ...

  4. CSS简单样式练习(一)

    运行效果: 源代码: 1 <!DOCTYPE html> 2 <html lang="zh"> 3 <head> 4 <meta char ...

  5. Blazor组件自做七 : 使用JS隔离制作定位/持续定位组件

    1. 运行截图 演示地址 2. 在文件夹wwwroot/lib,添加geolocation子文件夹,添加geolocation.js文件 本组件主要是调用浏览器两个API实现基于浏览器的定位功能,现代 ...

  6. Qt QTableView 表格内添加控件

    目录 Qt QTableView 表格内添加控件 1. QItemDelegate 2. setIndexWidget 3. setIndexWidget + setLayout Qt QTableV ...

  7. Unity中制作血条2.0

    ##1.血量显示 不必像之前那样添加Slider组件 直接创建Image 在添加Source Image之后,将Image Type 修改为Filled 通过修改Fill Mode就可以显示不同效果 ...

  8. Java学习day40

    跟着视频回顾了整个JavaSE的学习过程

  9. Java语言学习day20--7月26日

    ###11抽象类的产生 A:抽象类的产生 a:分析事物时,发现了共性内容,就出现向上抽取.会有这样一种特殊情况,就是方法功能声明相同,但方法功能主体不同.那么这时也可以抽取,但只抽取方法声明,不抽取方 ...

  10. 2021.08.05 P5357 康托展开模板(康托展开)

    2021.08.05 P5357 康托展开模板(康托展开) P5367 [模板]康托展开 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.康托展开 算法学习笔记(56): ...