[CF1519C] Berland Regional (数论分块)
题面
有 n 个学生和 n 所大学,每个学生在其中一所大学中学习,且各有一个能力值
s
i
s_i
si 。
某次组队打比赛的召集令会给一个数字 k ,表示团队数量。然后每所大学会先把自己的所有学生按照
a
i
a_i
ai 从大到小排序,选前
k
k
k 个组个队,前
k
+
1
k+1
k+1 到
2
k
2k
2k 个组个队,……剩下最后不足
k
k
k 个学生,这些学生就不能组队。
每次召集的总能力值为所有组出来的队伍的每个学生的能力值之和。现在有
n
n
n 次召集令,给出的
k
k
k 分别是 1~n,分别求每次召集的总能力值。
题解
我这个做法被 nlogn 做法吊打,本愧于过此题,然所用方法有点思维,不如写来搏之一笑。
分别求每个学生的贡献。
假设当前学生在他(她)的大学里排名为倒数第
y
y
y ,而大学里总共
x
x
x 个学生,那么该学生对数字为
k
k
k 的召集令有贡献当且仅当
x
m
o
d
k
<
y
x\!\!\!\!\mod k<y
xmodk<y
变一下式子:
x
−
⌊
x
k
⌋
∗
k
<
y
⇔
x
−
y
<
⌊
x
k
⌋
∗
k
⇔
⌊
x
−
y
k
⌋
<
⌊
x
k
⌋
x-\left\lfloor \frac{x}{k}\right\rfloor*k<y\\ ~~\Leftrightarrow~~ x-y<\left\lfloor \frac{x}{k}\right\rfloor*k\\ ~~\Leftrightarrow~~ \left\lfloor \frac{x-y}{k}\right\rfloor<\left\lfloor \frac{x}{k}\right\rfloor
x−⌊kx⌋∗k<y ⇔ x−y<⌊kx⌋∗k ⇔ ⌊kx−y⌋<⌊kx⌋
如果我们已知
⌊
x
k
⌋
=
d
\left\lfloor \frac{x}{k}\right\rfloor=d
⌊kx⌋=d,那么
⌊
x
−
y
k
⌋
<
d
⇔
x
−
y
<
d
k
⇔
⌊
x
−
y
d
⌋
<
k
\left\lfloor \frac{x-y}{k}\right\rfloor<d\\ ~~\Leftrightarrow~~ x-y<dk\\ ~~\Leftrightarrow~~ \left\lfloor \frac{x-y}{d}\right\rfloor<k
⌊kx−y⌋<d ⇔ x−y<dk ⇔ ⌊dx−y⌋<k
好,这是个关于
k
k
k 的范围的表达式了,由于我们知道
⌊
x
k
⌋
\left\lfloor \frac{x}{k}\right\rfloor
⌊kx⌋ 随着
k
k
k 的不同只有大约
x
\sqrt x
x
个取值,因此我们可以数论分块枚举,每次枚举到一个区间
[
l
,
r
]
[l,r]
[l,r] 和
d
d
d,就对答案序列的
[
max
(
⌊
x
−
y
d
⌋
+
1
,
l
)
,
r
]
[\max(\left\lfloor \frac{x-y}{d}\right\rfloor+1,l),r]
[max(⌊dx−y⌋+1,l),r] 产生贡献。
对每个学生都计算一次,复杂度
O
(
n
n
)
O(n\sqrt n)
O(nn
)。
CODE
#include<set>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 200005
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x) & (x))
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
int n,m,i,j,s,o,k;
int a[MAXN];
vector<int> u[MAXN];
LL sm[MAXN];
bool cmp(int x,int y) {return a[x] > a[y];}
int main() {
int T = read();
while(T --) {
n = read();
for(int i = 1;i <= n;i ++) u[i].clear(),sm[i] = 0;
for(int i = 1;i <= n;i ++) {
s = read(); u[s].push_back(i);
}
for(int i = 1;i <= n;i ++) {
a[i] = read();
}
for(int i = 1;i <= n;i ++) {
sort(u[i].begin(),u[i].end(),cmp);
int X = u[i].size();
for(int j = 0,nm = X;j < (int)u[i].size();j ++,nm --) {
int con = a[u[i][j]];
sm[1] += con; sm[nm+1] -= con;
for(int l = nm+1,r = 1;l <= X;l = r+1) {
r = X/(X/l); int d = X / l;
int ll = max(l,((X-nm)/d) + 1);
if(ll <= r) {
sm[ll] += con; sm[r+1] -= con;
}
}
}
}
for(int i = 1;i <= n;i ++) {
sm[i] += sm[i-1];
printf("%lld ",sm[i]);
}ENDL;
}
return 0;
}
[CF1519C] Berland Regional (数论分块)的更多相关文章
- 【BZOJ1257】余数之和(数论分块,暴力)
[BZOJ1257]余数之和(数论分块,暴力) 题解 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的 ...
- 51nod“省选”模测第二场 B 异或约数和(数论分块)
题意 题目链接 Sol 这题是来搞笑的吧.. 考虑一个数的贡献是\(O(\frac{N}{i})\) 直接数论分块. #include<bits/stdc++.h> #define Pai ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
- luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论
感觉其实很水? 题目就是一个Multi SG游戏,只需要预处理出所有的\(sg\)值即可\(O(Tn)\)计算 对于计算\(sg[n]\)而言,显然我们可以枚举划分了\(x\)堆来查看后继状态 那么, ...
- bzoj 3834 [Poi2014]Solar Panels 数论分块
3834: [Poi2014]Solar Panels Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 367 Solved: 285[Submit] ...
- 洛谷P1403 [AHOI2005] 约数研究 [数论分块]
题目传送门 约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩, ...
- 「BZOJ 2440」完全平方数「数论分块」
题意 \(T\)组数据,每次询问第\(k\)个无平方因子的数(\(1\)不算平方因子),\(T\leq 50,k\leq 10^9\) 题解 \(k\)的范围很大,枚举肯定不行,也没什么奇妙性质,于是 ...
- bzoj 1257 余数之和 —— 数论分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( \sum\limits_{i=1}^{n}k\%i = \sum\limits_ ...
- 【数论分块】bzoj2956: 模积和
数论分块并不精通……第一次调了一个多小时才搞到60pts:因为不会处理i==j的情况,只能枚举了…… Description $\sum_{i=1}^{n}\sum_{j=1 \land i \not ...
随机推荐
- JavaScript之创建八个对象过520
马上又到了一年一度的520了,程序猿们赶紧创建对象过520吧!!! JavaScript创建对象的几种方式: 一:字面量方式: var obj = {name: '程序猿'}; 二:通过new操作符: ...
- JavaScript Object学习笔记一
Object.assign(target, source1, source2, ...)//用于对象的复制合并(同名属性后覆盖前)或拷贝(拷贝自身可枚举属性,不拷贝继承属性或不可枚举属性),将sour ...
- 有关安装pycocotools的办法
1,首先需要安装Visual C++ 2015构建工具,地址https://download.microsoft.com/download/5/f/7/5f7acaeb-8363-451f-9425- ...
- Javaweb-Servlet学习
1.Servlet简介 Servlet就是sun公司开发动态web的一门技术 Sun在这些API中提供一个借口叫做:Servlet,如果你想开发一个Servlet程序,只需要完成两个小步骤: 编写一个 ...
- Vue搭建后台系统需要做的几点(持续更新中)
前言 持续更新 一.UI框架 推荐 Elemnet ui 二.图表 vue-schart npm install vue-schart -S <template> <div id=& ...
- 多台云服务器的 Kubernetes 集群搭建
环境 两台或多台腾讯云服务器(本人搭建用了两台),都是 CentOs 7.6, master 节点:服务器为 4C8G,公网 IP:124.222.61.xxx node1节点:服务器为 4C4G,公 ...
- 搭建uipath
我对windows也不太熟,也是第一次安装Uipath Orchestrator,希望有问题指出一起交流,可以留言,Uipath中文qq交流群:4656303241. 下载镜像 windows ser ...
- python实现人脸关键部位检测(附源码)
人脸特征提取 本文主要使用dlib库中的人脸特征识别功能. dlib库使用68个特征点标注出人脸特征,通过对应序列的特征点,获得对应的脸部特征.下图展示了68个特征点.比如我们要提 取眼睛特征,获取3 ...
- Kotlin学习快速入门(7)——扩展的妙用
原文地址: Kotlin学习快速入门(7)--扩展的妙用 - Stars-One的杂货小窝 之前也模模糊糊地在用这个功能,也是十分方便,可以不用继承,快速给某个类增加新的方法,本篇便是来讲解下Kotl ...
- .NET ORM框架HiSql实战-第三章-使用自定义编号生成【申请编号】
一.引言 上一篇.NET ORM框架HiSql实战-第二章-使用Hisql实现菜单管理(增删改查) 中菜单编号采用的是雪花ID,生成的编号无法自定义.比如本系统的一个申请业务,需要按前缀+日期+流水号 ...