线性规划的单纯形法—R实现
table { margin: auto }
线性规划的单纯形法
线性规划是运筹学中的一个基本分支,它广泛应用现有的科学技术和数学方法,解决实际中的问题,帮助决策人员选择最优方针和决策,自1947年丹捷格提出了一般线性规划问题求解的方法———单纯形法之后,线性规划在理论上趋向成熟,特别是在电子计算机能处理成千上万个约束条件和决策的线性规划问题之后,线性规划的适用领域更为广泛,是对有限的资源进行合理分配,企业提高生产效率,从而获得最佳经济效益的有效工具。
1. 问题的提出
例:(生产计划问题)假设某厂计划生产甲、乙两种产品,其主要原材料有钢材360kg,铜材300kg及专用设备能力200台时,已原材料和设备的单间消耗定额以及单位产品所获利润如下表所示:
| 甲 | 乙 | 现有资源 | |
|---|---|---|---|
| 钢材 | 9 | 4 | 360 |
| 铜材 | 3 | 10 | 300 |
| 设备台时 | 4 | 5 | 200 |
| 利润 | 60 | 120 |
问如何安排生产方使该厂所获利润最大?
2. 线性规划模型
设生产甲乙两种产品的数量为\(x_1\)和\(x_2\),建立数学模型如下:
\]
标准化:
\]
3. R计算程序
Lp <-function(c,A,b,lav)
#c为目标函数系数向量;A为添加松弛变量后的系数矩阵;
#b为常向量;lav松弛变量序号(构成单位阵)
{
##求初始基可行解、检验数
n = ncol(A);m = nrow(A)
sol = rep(0,n)
for(i in 1:length(lav))sol[lav[i]] = b[i]
B = lav #基变量向量序号(若1,3为基变量序号,则B=c(1,3))
sigma = c - c[lav]%*%A
print("初始单纯形表!")
DF = data.frame("CB" = c[B],"Base" = B,"b"=b, "x" = A)
print(list("frame" = DF,"sigma" = sigma))
while(any(sigma>0))
{
infty = which(sigma>0)
for(i in infty)if(all(A[,i] <= 0))print("答:存在无界解!")
psigma = max(sigma)
pcol = which(sigma == psigma) #主元素所在列
sita0 = b/A[,pcol]
sita = min(sita0)
prow = which(sita0 == sita) #主元素所在行
B[prow] = pcol #换基变量
##列出新单纯形表
b[prow] = b[prow]/A[prow,pcol] #对主元素行
A[prow,] = A[prow,]/A[prow,pcol]
for(i in c(1:m)[-prow])
{
b[i] = b[i] - b[prow]*A[i,pcol]
A[i,] = A[i,] - A[prow,]*A[i,pcol]
}
sigma = c - c[B]%*%A
print("过程单纯形表!")
DF = data.frame("CB" = c[B],"Base" = B,"b"=b, "x" = A)
print(list("frame" = DF,"sigma" = sigma))
}
if(any(sigma[-B]==0))
{print("答:存在无穷多最优解!")
}else{print("答:唯一最优解!")}
print("最终单纯形表!")
DF = data.frame("CB" = c[B],"Base" = B,"b"=b, "x" = A)
print(list("goal coef" = c,"frame" = DF,"sigma" = sigma))
sol = rep(0,n)
for(i in 1:length(B))sol[B[i]] = b[i]
return(list("最优解"=sol,"最大值"=sum(sol*c)))
}
#输入数据
c=c(60,120,0,0,0)
A=matrix(c(9,3,4,4,10,5,1,0,0,0,1,0,0,0,1),3)
b=c(360,300,200)
lav=c(3,4,5)
#运行结果
Lp(c,A,b,lav)
4. 计算步骤展现
#初始单纯形表
$frame
CB Base b x.1 x.2 x.3 x.4 x.5
1 0 3 360 9 4 1 0 0
2 0 4 300 3 10 0 1 0
3 0 5 200 4 5 0 0 1
$sigma
[,1] [,2] [,3] [,4] [,5]
[1,] 60 120 0 0 0`
#过程单纯形表1
$frame
CB Base b x.1 x.2 x.3 x.4 x.5
1 0 3 240 7.8 0 1 -0.4 0
2 120 2 30 0.3 1 0 0.1 0
3 0 5 50 2.5 0 0 -0.5 1
$sigma
[,1] [,2] [,3] [,4] [,5]
[1,] 24 0 0 -12 0
#过程单纯形表2
$frame
CB Base b x.1 x.2 x.3 x.4 x.5
1 0 3 84 0 0 1 1.16 -3.12
2 120 2 24 0 1 0 0.16 -0.12
3 60 1 20 1 0 0 -0.20 0.40
$sigma
[,1] [,2] [,3] [,4] [,5]
[1,] 0 0 0 -7.2 -9.6
#最终单纯形表
$frame
CB Base b x.1 x.2 x.3 x.4 x.5
1 0 3 84 0 0 1 1.16 -3.12
2 120 2 24 0 1 0 0.16 -0.12
3 60 1 20 1 0 0 -0.20 0.40
$sigma
[,1] [,2] [,3] [,4] [,5]
[1,] 0 0 0 -7.2 -9.6
$最优解
[1] 20 24 84 0 0
$最优值
[1] 4080
5. 总结
运用所学运筹学知识,针对该公司生产计划提出一些科学决策方案,从而达到资源充分利用的目的。通过对方案的提出、分析和解决对策的制定,使我们能够运用运筹学知识和相关工具解决一些实际性问题,加深对该课程的认识。同时,通过软件的计算使用,能够实现将理论与实践相结合的目的,增强我们动手操作能力和工作协调力。
线性规划的单纯形法—R实现的更多相关文章
- 【UOJ 179】 #179. 线性规划 (单纯形法)
http://uoj.ac/problem/179 补充那一列修改方法: 对于第i行: $$xi=bi-\sum Aij*xj$$ $$=bi-\sum_{j!=e} Aij*xj-Aie*xe ...
- MATLAB 线性规划实例应用
线性规划 线性规划函数 功能:求解线性规划问题 语法 x = linprog(f,A,b):求解问题 min fx,约束条件为 Ax <= b x = linprog(f,A,b,Aeq,beq ...
- 【Uva 10498】满意值
Description Kaykobad教授把为ACM选手买饭的任务交给了Nasa.Nasa决定买n种不同的食物.然后他询问了m名选手对每种食物的需求量.选手们当然不会给出任何符合逻辑的回答,他们只是 ...
- Matrix 高斯消元Gaussian elimination 中的complete pivoting和partial pivoting
首先科普下Pivoting的含义 一般翻译为“主元”,在对矩阵做某种算法时,首先进行的部分元素.在线性规划的单纯形法中常见.wiki的解释如下:Pivot element(the first elem ...
- 《算法》第六章部分程序 part 8
▶ 书中第六章部分程序,加上自己补充的代码,包括单纯形法求解线性规划问题 ● 单纯形法求解线性规划问题 // 表上作业法,I 为单位阵,y 为对偶变量,z 为目标函数值 // n m 1 // ┌── ...
- 关于各种算法以及好的blog的整理(持续更新)
一堆博客先扔着,等有空的时候再去看……好像没几个会的…… 以下都是待学习的算法 博弈论 https://www.cnblogs.com/cjyyb/p/9495131.html https://blo ...
- 最优解的lingo和MATLAB解法
最近运筹学学了线性规划和单纯形法,然后老师讲到了运用lingo和MATLAB软件分别求解的方法 首先,我们来讲讲lingo的(小技巧,只要把鼠标滑轮固定在输入界面按ctrl就可以放大了) lingo比 ...
- 干货 | 10分钟带你彻底了解column generation(列生成)算法的原理附java代码
OUTLINE 前言 预备知识预警 什么是column generation 相关概念科普 Cutting Stock Problem CG求解Cutting Stock Problem 列生成代码 ...
- [原]CentOS7安装Rancher2.1并部署kubernetes (二)---部署kubernetes
################## Rancher v2.1.7 + Kubernetes 1.13.4 ################ ##################### ...
- 利用python进行数据分析2_数据采集与操作
txt_filename = './files/python_baidu.txt' # 打开文件 file_obj = open(txt_filename, 'r', encoding='utf-8' ...
随机推荐
- Long类型转换为IP String
package com.barry.iputil.util; public class IPFormat { public static String toIPStr(Long LongIP) { i ...
- Linux系统管理实战-DNS
DNS 域名解析 DNS(domain name system) 解析方式 1.本地解析 /etc/hosts 127.0.0.1 localhost localhost.localdomain lo ...
- 洛谷 P2330 [SCOI2005]繁忙的都市 题解
START: 2021-08-05 15:30:20 题目链接: https://www.luogu.com.cn/problem/P2330 题目详情: 城市C是一个非常繁忙的大都市,城市中的道路十 ...
- mysql可参考的查询
获取批量修改列为大写SQL脚本 1 SELECT 2 concat( 'alter table ', TABLE_NAME, ' change column ', COLUMN_NAME, ' ', ...
- element ui动态生成表单数据与校验(后台传入数据)
前言 最近有一个需求是通过后台返回的数据,生成表单并添加校验.在做的过程中,动态表单挺好做,关键是校验.困扰了我2天,最后通过查找资料和"运气"终于解决了.解决问题关键点:vue的 ...
- 微信小程序地理定位和城市选择列表
1.先获取用户是否授权地理定位,如果没有让其跳转到设置页面手动开启(获取到的位置是经纬度,需要借助其他地图SDK的地址逆解析获取省市区的名字) getSetting() { wx.getSetting ...
- Linux配置NTP时间同步
1.检查系统是否安装了NTP包(linux系统一般自带NTP4.2)没有安装我们直接使用yum命令在线安装:yum install ntp2.NTP服务端配置文件编辑vim /etc/ntp.conf ...
- 1007.Django模型基础02
一.常用的查询 常用的查询方法(注:User为app项目): 获取所有的记录: rs = User.objects.all() 获取第一条数据:rs = User.objects.first() 获取 ...
- VS中多字节字符集和UNICODE字符集的使用说明
两者的核心区别: 1.在制作多国语言软件时,使用Unicode(UTF-16,16bits,两个字节).无特殊要求时,还是使用多字节字符集比较好. 2.如果要兼容C编程,只能使用多字节字符集.这里的兼 ...
- vue input有值但还是验证不通过
验证失败原因: 因为input自动把输入的值转换为string类型,导致验证失败. 解决方案: 一. Input中的v-model改为v-model.number: 二.rules里面需要加type: ...