基于python的数学建模---多模糊评价



权重 ak的确定——频数统计法

选取正整数p的方法
画箱形图 取1/4与3/4的距离(IQR) ceil()取整
代码:
import numpy as np
def frequency(matrix,p):
'''
频数统计法确定权重
:param matrix: 因素矩阵
:param p: 分组数
:return: 权重向量
'''
A = np.zeros((matrix.shape[0]))
for i in range(0, matrix.shape[0]):
## 根据频率确定频数区间列表
row = list(matrix[i, :])
maximum = max(row)
minimum = min(row)
gap = (maximum - minimum) / p
row.sort()
group = []
item = minimum
while(item < maximum):
group.append([item, item + gap])
item = item + gap
print(group)
# 初始化一个数据字典,便于记录频数
dataDict = {}
for k in range(0, len(group)):
dataDict[str(k)] = 0
# 判断本行的每个元素在哪个区间内,并记录频数
for j in range(0, matrix.shape[1]):
for k in range(0, len(group)):
if(matrix[k, j] >= group[k][0]):
dataDict[str(k)] = dataDict[str(k)] + 1
break
print(dataDict)
# 取出最大频数对应的key,并以此为索引求组中值
index = int(max(dataDict,key=dataDict.get))
mid = (group[index][0] + group[index][1]) / 2
print(mid)
A[i] = mid
A = A / sum(A[:]) # 归一化
return A
权重 ak的确定——模糊层次分析法

代码:
import numpy as np def AHP(matrix):
if isConsist(matrix):
lam, x = np.linalg.eig(matrix)
return x[0] / sum(x[0][:])
else:
print("一致性检验未通过")
return None def isConsist(matrix):
'''
:param matrix: 成对比较矩阵
:return: 通过一致性检验则返回true,否则返回false
'''
n = np.shape(matrix)[0]
a, b = np.linalg.eig(matrix)
maxlam = a[0].real
CI = (maxlam - n) / (n - 1)
RI = [0, 0, 0.58, 0.9, 1.12, 1.24, 1.32, 1.41, 1.45]
CR = CI / RI[n - 1]
if CR < 0.1:
return True, CI, RI[n - 1]
else:
return False, None, None

import numpy as np def appraise(criterionMatrix, targetMatrixs, relationMatrixs):
'''
:param criterionMatrix: 准则层权重矩阵
:param targetMatrix: 指标层权重矩阵列表
:param relationMatrixs: 关系矩阵列表
:return:
'''
R = np.zeros((criterionMatrix.shape[1], relationMatrixs[0].shape[1]))
for index in range(0, len(targetMatrixs)):
row = mul_mymin_operator(targetMatrixs[index], relationMatrixs[index])
R[index] = row
B = mul_mymin_operator(criterionMatrix, R)
return B / sum(B[:]) def mul_mymin_operator(A, R):
B = np.zeros(1, R.shape[1])
for column in range(1, R.shape[1]):
list = []
for row in range(1, R.shape[0]):
list = list.append(A[row] * R[row, column])
B[0, column] = mymin(list)
return B def mymin(list):
global temp
for index in range(1, len(list)):
if index == 1:
temp = min(1, list[0] + list[1])
else:
temp = min(1, temp + list[index])
return temp
基于python的数学建模---多模糊评价的更多相关文章
- 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)
函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...
- Python数学建模-01.新手必读
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...
- Python数学建模-02.数据导入
数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...
- Python小白的数学建模课-A1.国赛赛题类型分析
分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要 ...
- Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评
新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...
- Python小白的数学建模课-07 选址问题
选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...
- Python小白的数学建模课-09 微分方程模型
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...
- Python小白的数学建模课-B5. 新冠疫情 SEIR模型
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...
- Python小白的数学建模课-B6. 新冠疫情 SEIR 改进模型
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SEIR 模型考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫 ...
- Python小白的数学建模课-B4. 新冠疫情 SIR模型
Python小白的数学建模课-B4. 新冠疫情 SIR模型 传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SIR 模型将人群分为易感者(S类). ...
随机推荐
- KingbaseES 工具sys_dump,sys_restore使用介绍
说明: KingbaseES V8R6版本中自带数据库备份导出sys_dump,和备份恢复sys_restore工具. sys_dump:把KingbaseES数据库抽取为一个脚本文件或其他归档文件. ...
- KingbaseES V8R6 vacuum index_cleanup 选项
描述: 由于索引页的复用不像HEAP TABLE的PAGE复用机制那么简单只要有空闲空间就可以插入.索引页的空闲空间被复用,必须是PAGE的边界内的值才允许插入. 因此索引一旦膨胀,很难收缩,常用的方 ...
- 【读书笔记】C#高级编程 第八章 委托、lambda表达式和事件
(一)引用方法 委托是寻址方法的.NET版本.委托是类型安全的类,它定义了返回类型和参数的类型.委托不仅包含对方法的引用,也可以包含对多个方法的引用. Lambda表达式与委托直接相关.当参数是委托类 ...
- JAVA中让Swagger产出更加符合我们诉求的描述文档,按需决定显示或者隐藏指定内容
大家好,又见面啦. 在前一篇文档<JAVA中自定义扩展Swagger的能力,自动生成参数取值含义说明,提升开发效率>中,我们探讨了如何通过自定义注解的方式扩展swagger的能力让Swag ...
- 创建x11vnc系统进程
〇.前言 为方便使用vnc,所以寻找到一个比较好用的vnc服务端那就是x11vnc,索性就创建了一个系统进程 一.环境 系统:银河麒麟v4-sp2-server 软件:x11vnc[linux下].V ...
- 进阶:spring-bean生命周期流程
Bean的生成过程 主要流程图 1. 生成BeanDefinition Spring启动的时候会进行扫描,会先调用org.springframework.context.annotation.Clas ...
- 对于Java中权限修饰符的理解
老是把Java中权限修饰符给忘记,写一个博客加深印象吧 权限分为四个作用域:当前类,同一个包,其他包的子类,其他包的类. 首先要知道包的概念,Java中一个包是指一个package下的所有文件. pr ...
- .Net 不受 EAR 的约束
NPUlrk :https://github.com/NPUlrk 同学在 dotnet/runtime 仓库提出了一共问题: https://github.com/dotnet/runtime/d ...
- 6.云原生之Docker容器Registry私有镜像仓库搭建实践
转载自:https://www.bilibili.com/read/cv15219863/?from=readlist #1.下载registry仓库并设置数据存放的目录(并生成认证账号密码) doc ...
- 应用健康: Liveness 与 Readiness
文章转载自:https://www.kuboard.cn/learning/k8s-intermediate/workload/pod-health.html 介绍 Liveness 指针是存活指针, ...