DLX+二分。

 /* 2295 */
#include <iostream>
#include <string>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <vector>
#include <deque>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <climits>
#include <cctype>
#include <cassert>
#include <functional>
#include <iterator>
#include <iomanip>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,1024000") #define sti set<int>
#define stpii set<pair<int, int> >
#define mpii map<int,int>
#define vi vector<int>
#define pii pair<int,int>
#define vpii vector<pair<int,int> >
#define rep(i, a, n) for (int i=a;i<n;++i)
#define per(i, a, n) for (int i=n-1;i>=a;--i)
#define clr clear
#define pb push_back
#define mp make_pair
#define fir first
#define sec second
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define lson l, mid, rt<<1
#define rson mid+1, r, rt<<1|1 const double eps = 1e-;
const int maxn = ;
int N, M, K;
double cx[maxn], cy[maxn];
double rx[maxn], ry[maxn];
bool visit[maxn]; typedef struct {
static const int maxc = ;
static const int maxr = ;
static const int maxn = maxr * maxc; int n, sz;
int S[maxc]; int row[maxn], col[maxn];
int L[maxn], R[maxn], U[maxn], D[maxn]; int ansd; void init(int n_) {
n = n_; rep(i, , n+) {
L[i] = i - ;
R[i] = i + ;
U[i] = i;
D[i] = i;
col[i] = i;
} L[] = n;
R[n] = ; ansd = INT_MAX;
sz = n+;
memset(S, , sizeof(S));
} void addRow(int r, vi columns) {
int first = sz;
int size = SZ(columns); rep(i, , size) {
int c = columns[i]; L[sz] = sz - ;
R[sz] = sz + ; D[sz] = c;
U[sz] = U[c];
D[U[c]] = sz;
U[c] = sz; row[sz] = r;
col[sz] = c; ++S[c];
++sz;
} L[first] = sz - ;
R[sz - ] = first;
} void remove(int c) {
for (int i=D[c]; i!=c; i=D[i]) {
L[R[i]] = L[i];
R[L[i]] = R[i];
--S[col[i]];
}
} void restore(int c) {
for (int i=D[c]; i!=c; i=D[i]) {
L[R[i]] = i;
R[L[i]] = i;
++S[col[i]];
}
} int H() {
int ret = ; memset(visit, false, sizeof(visit));
for (int i=R[]; i!=; i=R[i]) {
if (visit[col[i]])
continue;
++ret;
visit[col[i]] = true;
for (int j=D[i]; j!=i; j=D[j]) {
for (int k=R[j]; k!=j; k=R[k]) {
visit[col[k]] = true;
}
}
} return ret;
} void dfs(int d) {
int delta = H(); if (delta+d>=ansd || d+delta>K)
return ; if (R[] == ) {
ansd = min(ansd, d);
return ;
} int c = R[];
for (int i=R[]; i!=; i=R[i]) {
if (S[i] < S[c])
c = i;
} for (int i=D[c]; i!=c; i=D[i]) {
remove(i);
for (int j=R[i]; j!=i; j=R[j]) {
remove(j);
}
dfs(d + );
if (ansd <= K)
return ;
for (int j=L[i]; j!=i; j=L[j]) {
restore(j);
}
restore(i);
}
} } DLX; DLX solver; double Length(int j, int i) {
return sqrt((cx[i]-rx[j])*(cx[i]-rx[j]) + (cy[i]-ry[j])*(cy[i]-ry[j]));
} bool judge(double bound) {
memset(visit, false, sizeof(visit));
solver.init(N); rep(i, , M+) {
vi columns;
int cnt = ;
rep(j, , N+) {
if (Length(i, j) <= bound) {
columns.pb(j);
visit[j] = true;
++cnt;
}
} if (SZ(columns) > ) {
solver.addRow(i, columns);
}
} rep(j, , N+) {
if (!visit[j]) {
#ifndef ONLINE_JUDGE
// printf("ansd = %d\n", solver.ansd);
#endif
return false;
}
} solver.dfs(); #ifndef ONLINE_JUDGE
// printf("ansd = %d\n", solver.ansd);
#endif
return solver.ansd<=K;
} int main() {
ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
freopen("data.in", "r", stdin);
freopen("data.out", "w", stdout);
#endif double ans;
double l, r, mid;
int t; scanf("%d", &t);
while (t--) {
scanf("%d %d %d", &N, &M, &K);
rep(i, , N+)
scanf("%lf %lf", &cx[i], &cy[i]);
rep(i, , M+)
scanf("%lf %lf", &rx[i], &ry[i]);
l = ;
r = ans = 2000.0;
while (r >= l) {
mid = (r + l) / 2.0;
if (judge(mid)) {
ans = min(ans, mid);
r = mid - eps;
} else {
l = mid + eps;
}
}
printf("%.06lf\n", ans);
} #ifndef ONLINE_JUDGE
printf("time = %d.\n", (int)clock());
#endif return ;
}

【HDOJ】2295 Radar的更多相关文章

  1. 【HDOJ】4729 An Easy Problem for Elfness

    其实是求树上的路径间的数据第K大的题目.果断主席树 + LCA.初始流量是这条路径上的最小值.若a<=b,显然直接为s->t建立pipe可以使流量最优:否则,对[0, 10**4]二分得到 ...

  2. 【HDOJ】【3506】Monkey Party

    DP/四边形不等式 裸题环形石子合并…… 拆环为链即可 //HDOJ 3506 #include<cmath> #include<vector> #include<cst ...

  3. 【HDOJ】【3516】Tree Construction

    DP/四边形不等式 这题跟石子合并有点像…… dp[i][j]为将第 i 个点开始的 j 个点合并的最小代价. 易知有 dp[i][j]=min{dp[i][j] , dp[i][k-i+1]+dp[ ...

  4. 【HDOJ】【3480】Division

    DP/四边形不等式 要求将一个可重集S分成M个子集,求子集的极差的平方和最小是多少…… 首先我们先将这N个数排序,容易想到每个自己都对应着这个有序数组中的一段……而不会是互相穿插着= =因为交换一下明 ...

  5. 【HDOJ】【2829】Lawrence

    DP/四边形不等式 做过POJ 1739 邮局那道题后就很容易写出动规方程: dp[i][j]=min{dp[i-1][k]+w[k+1][j]}(表示前 j 个点分成 i 块的最小代价) $w(l, ...

  6. 【HDOJ】【3415】Max Sum of Max-K-sub-sequence

    DP/单调队列优化 呃……环形链求最大k子段和. 首先拆环为链求前缀和…… 然后单调队列吧<_<,裸题没啥好说的…… WA:为毛手写队列就会挂,必须用STL的deque?(写挂自己弱……s ...

  7. 【HDOJ】【3530】Subsequence

    DP/单调队列优化 题解:http://www.cnblogs.com/yymore/archive/2011/06/22/2087553.html 引用: 首先我们要明确几件事情 1.假设我们现在知 ...

  8. 【HDOJ】【3068】最长回文

    Manacher算法 Manacher模板题…… //HDOJ 3068 #include<cstdio> #include<cstring> #include<cstd ...

  9. 【HDOJ】【1512】Monkey King

    数据结构/可并堆 啊……换换脑子就看了看数据结构……看了一下左偏树和斜堆,鉴于左偏树不像斜堆可能退化就写了个左偏树. 左偏树介绍:http://www.cnblogs.com/crazyac/arti ...

随机推荐

  1. C# TcpClient 连接状态检测

    C# TcpClient在连接成功后无法检测连接状态,即使对方关闭了网络连接.以下扩展可检测连接状态: public static class TcpClientEx { public static ...

  2. 字符串 前篇 ---- sizeof()操作符和strlen()库函数

    本文不是研究sizeof(), strlen() 的深奥定义和原理,我们不会在理论上太过钻牛角尖.希望读这篇文章的你,也不要太过抠概念(不要拘泥于语法).我们只做 实用意义 的介绍和讨论. 在介绍字符 ...

  3. 关于Asp.Net Forms身份认证

    Asp.Net管道式的构建个我们提供了通过IHttpMoudle来订阅管线事件来达到干预HTTP请求的目的,Asp.Net的身份认证正是通过此种方式来对请求来执行身份认证的,这篇文章仅仅谈论Forms ...

  4. html19-----视频,音乐的插入

    视频格式 MP4 格式是一种新的即将普及的因特网视频格式.HTML5 .Flash 播放器以及优酷等视频网站均支持它. 格式 文件 描述 AVI .avi AVI (Audio Video Inter ...

  5. GDI+中发生一般性错误之文件被占用

    有多种原因可能导致这个异常出现,比如创建文件的权限不足.文件被占用等. 这里提供一个使用Stream读取图片避免文件被占用的方法. public Image GetImageFromStream(st ...

  6. [Guava官方文档翻译] 1.Guava简介 (Introduction)

    用户指南 Guava包含Google在Java项目中用到的一些核心库:collections, caching, primitives support, concurrency 库, common a ...

  7. Java大数操作类

    Java的大数操作分为BigInteger和BigDecimal,但这两给类是分开使用的,有时候在编程的时候显得略微繁琐,现在编写了一个将二者合二为一的大数操作类. 大数操作类代码如下: packag ...

  8. 第36条:坚持使用Override注解

    @Override 注解只能用在方法声明中,表示被注解的方法声明覆盖了超类型中的一个声明. @Target(ElementType.METHOD) @Retention(RetentionPolicy ...

  9. 3.MySQL之创建/删除用户

    登录mysql服务器后可使用grant命令来创建用户并赋予相关权限. mysql> use mysql; Reading table information for completion of ...

  10. hdu 5055 Bob and math problem

    先把各个数字又大到小排列,如果没有前导零并且为奇数,则直接输出.如果有前导零,则输出-1.此外,如果尾数为偶数,则从后向前找到第一个奇数,并把其后面的数一次向前移动,并把该奇数放到尾部. 值得注意的是 ...