3173: [Tjoi2013]最长上升子序列

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1183  Solved: 610
[Submit][Status][Discuss]

Description

给定一个序列,初始为空。现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置。每插入一个数字,我们都想知道此时最长上升子序列长度是多少?

Input

第一行一个整数N,表示我们要将1到N插入序列中,接下是N个数字,第k个数字Xk,表示我们将k插入到位置Xk(0<=Xk<=k-1,1<=k<=N)

Output

N行,第i行表示i插入Xi位置后序列的最长上升子序列的长度是多少。

Sample Input

3
0 0 2

Sample Output

1
1
2

HINT

100%的数据 n<=100000

Source

 
题解:
Treap+中序遍历+二分。
先把所有数字加入,这用平衡树维护即可(但要记得加入的是位置)。
然后中序遍历搞出最终序列。
最后二分求最长上升子序列。(其实就是nlogn的求法)
 #include<bits/stdc++.h>
using namespace std;
#define MAXN 100010
#define INF 1e9
struct node
{
int left,right,val,size,count,rnd;
}tree[MAXN];
int ans[MAXN],v[MAXN],a[MAXN],SIZE,root,lv;
int read()
{
int s=,fh=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')fh=-;ch=getchar();}
while(ch>=''&&ch<=''){s=s*+(ch-'');ch=getchar();}
return s*fh;
}
void Update(int k){tree[k].size=tree[tree[k].left].size+tree[tree[k].right].size+;}
void Lturn(int &k){int t=tree[k].right;tree[k].right=tree[t].left;tree[t].left=k;tree[t].size=tree[k].size;Update(k);k=t;}
void Rturn(int &k){int t=tree[k].left;tree[k].left=tree[t].right;tree[t].right=k;tree[t].size=tree[k].size;Update(k);k=t;}
void Insert(int &k,int x)
{
if(k==)
{
SIZE++;k=SIZE;
tree[k].size=;tree[k].rnd=rand();
return;
}
tree[k].size++;
if(x<=tree[tree[k].left].size){Insert(tree[k].left,x);if(tree[tree[k].left].rnd<tree[k].rnd)Rturn(k);}
else {Insert(tree[k].right,x-tree[tree[k].left].size-);if(tree[tree[k].right].rnd<tree[k].rnd)Lturn(k);}
}
void dfs(int k)
{
if(k==)return;
dfs(tree[k].left);
v[++lv]=k;
dfs(tree[k].right);
}
int main()
{
int n,i,la,tmp,x;
n=read();
for(i=;i<=n;i++){x=read();Insert(root,x);}
lv=;
dfs(root);
memset(ans,,sizeof(ans));
la=;
for(i=;i<=n;i++)a[i]=INF;
for(i=;i<=n;i++)
{
tmp=upper_bound(a+,a+la+,v[i])-a;
a[tmp]=min(a[tmp],v[i]);
ans[v[i]]=tmp;
la=max(la,tmp);
}
for(i=;i<=n;i++)
{
ans[i]=max(ans[i-],ans[i]);
printf("%d\n",ans[i]);
}
return ;
}

Bzoj 3173: [Tjoi2013]最长上升子序列 平衡树,Treap,二分,树的序遍历的更多相关文章

  1. bzoj 3173 [Tjoi2013]最长上升子序列 (treap模拟+lis)

    [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2213  Solved: 1119[Submit][Status] ...

  2. bzoj 3173: [Tjoi2013]最长上升子序列【dp+线段树】

    我也不知道为什么把题看成以插入点为结尾的最长生生子序列--还WA了好几次 先把这个序列最后的样子求出来,具体就是倒着做,用线段树维护点数,最开始所有点都是1,然后线段树上二分找到当前数的位置,把这个点 ...

  3. BZOJ 3173: [Tjoi2013]最长上升子序列( BST + LIS )

    因为是从1~n插入的, 慢插入的对之前的没有影响, 所以我们可以用平衡树维护, 弄出最后的序列然后跑LIS就OK了 O(nlogn) --------------------------------- ...

  4. BZOJ 3173: [Tjoi2013]最长上升子序列

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1524  Solved: 797[Submit][St ...

  5. BZOJ 3173: [Tjoi2013]最长上升子序列 [splay DP]

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1613  Solved: 839[Submit][St ...

  6. BZOJ 3173 [Tjoi2013] 最长上升子序列 解题报告

    这个题感觉比较简单,但却比较容易想残.. 我不会用树状数组求这个原排列,于是我只好用线段树...毕竟 Gromah 果弱马. 我们可以直接依次求出原排列的元素,每次找到最小并且最靠右的那个元素,假设这 ...

  7. BZOJ 3173: [Tjoi2013]最长上升子序列 (线段树+BIT)

    先用线段树预处理出每个数最终的位置.然后用BIT维护最长上升子序列就行了. 用线段树O(nlogn)O(nlogn)O(nlogn)预处理就直接倒着做,每次删去对应位置的数.具体看代码 CODE #i ...

  8. BZOJ 3173: [Tjoi2013]最长上升子序列 Splay

    一眼切~ 重点是按照 $1$~$n$ 的顺序插入每一个数,这样的话就简单了. #include <cstdio> #include <algorithm> #define N ...

  9. bzoj3173[Tjoi2013]最长上升子序列 平衡树+lis

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2253  Solved: 1136[Submit][S ...

随机推荐

  1. 九度OJ 1084 整数拆分

    题目地址:http://ac.jobdu.com/problem.php?pid=1084 题目描述: 一个整数总可以拆分为2的幂的和,例如: 7=1+2+4 7=1+2+2+2 7=1+1+1+4 ...

  2. centOS tengine 安装后 不能访问的问题

    1 安装方式跟在ubuntu下 安装一样.因为都是用源码 2  但安装好以后发现,局域网电脑访问不了!.原以为是安装错了.又装了一遍,还是不行,最终是iptables 没开放80端口... http: ...

  3. wamp配置

    # #localhost # <VirtualHost *:> DocumentRoot "D:/software/wamp/www" ServerName local ...

  4. CSS伪类对象before和after的用法

    一直感觉这两个伪类对象不是很重要,并且IE对它两兄弟并不支持,所以也没有怎么静下心来研究,只有在清楚浮动clearfix的时候会用到哈,其他都很 少用!不过最近在研究css3的时候觉得它两个的搭配不仅 ...

  5. yii2单个视图加载jss,css

    1,定义资源:首先在AppAsset.php里面定义2个方法, //按需加载css public static function addCss($view, $cssfile) { $view-> ...

  6. Delphi接口

    program Demo1; { Create Date: 2014-06-29 Author: P.S.M 1.接口Demo1 } {$APPTYPE CONSOLE} uses SysUtils; ...

  7. SQL SERVER 2008 使用TDE加密和解密

    SQL SERVER 2008 加密和解密,这样的文件在互联网上不胜枚举,本文的寓意还是一样,一为记录,二可以为开发者提供在实现过程中的注意事项. TDE: Transparent data encr ...

  8. 快速发展的Swift是否将淘汰Objective-C?

    随便拉上一个果粉说说这一年来苹果公司的成就,Apple Watch肯定排第一,再下来是iPhone破销量纪录及苹果30亿美元收购Beats Electronics,消息灵通的人说不定还会提到Apple ...

  9. C技巧:结构体参数转成不定参数

    下面这段程序是一个C语言的小技巧,其展示了如何把一个参数为结构体的函数转成一个可变参数的函数,其中用到了宏和内建宏"__VA_ARGS__",下面这段程序可以在GCC下正常编译通过 ...

  10. apache开启.htaccess及.htaccess的使用方法

    今天本地调试PHP程序,用到了.htaccess,而默认配置里面开启.htaccess,在网上找到了开启.htaccess的可行方法,供朋友们借鉴.(开启的我他的方法不行,查找了一下AllowOver ...