【题目描述】

我们知道斐波那契数列0 1 1 2 3 5 8 13……

数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1)。

求斐波那契数列中的第n位mod 10000的值。

【分析】

这是我们熟悉的斐波那契数列,原来呢我们是递推求值的嘛,当然这是最水的想法~~可是!这里的n很大诶,有10^9,for一遍肯定是不可以的咯。

于是,我学会了用矩阵乘法求斐波那契数列(貌似是很经典的)。

作为初学者的我觉得十分神奇!!

好,我们来看:

我们每次存两个数f[i-1]和f[i-2],表示数列中的第i-1个数和第i-2的数,如何用这两个数推出我们下一次要存的两个数f[i]和f[i-1]呢,嗯,题目已经说得很清楚了:

f[i-1]=f[i-1]

f[i]=f[i-1]+f[i-2]

可能你会觉得第一句有一点废话,但是是有不一样的意义的,这体现了递推的过程,就是说我们每次扫两个数,根据前面的两个数推出后面的两个数,这个思想在后面我做的一题——poj3734中有更好的体现。根据这个我们可以建一个2*2的矩阵A

1 1
1 0

然后把我们每次存的两个数放在另一个矩阵B里面:

f[i-1]
f[i-2]

那么把这两个矩阵相乘就可以得到另一个矩阵:

f[i]
f[i-1]

这样就可以得到f[i]了,至于为什么乘了之后会变成这两个数,我们根据矩阵乘法的乘法规律可以很容易推出来。

这样子的话,我们每次用A*B替换B,最后得到的矩阵的第一个数就是f[n]了。

那么,矩阵乘法的优越性究竟体现在哪里呢。其实,矩阵乘法只是体现了我们从之前求的数到现在要求的数的递推过程,就是说矩阵乘法可以完成多个元素的递推。不过这个我们用普通的递推就可以实现的啊~~认真想想我们就能发现,我们在矩阵乘法的过程中把上见面的A矩阵自己相乘了很多遍。就是说,我们可以求A矩阵的幂最后乘上B矩阵,既然要求幂,矩阵乘法满足结合律,那么我们就可以用快速幂啦~~矩阵乘法的优越性就体现在这里:在递推过程变成不断乘以一个矩阵,然后用快速幂快速求得从第一个到第n个的递推式,这样子就可以在短时间内完成递推了。

哇塞,人类的智商啊~~让我们继续膜拜那些智商正无穷的大神吧,orz,orz……

之前写的快速幂都是递归式的,现在终于学会新的快速幂写法,纪念一下:

 while(n)
{
if(n&) b=a*b;
a=a*a;
n>>=;
}

为什么这样打快速幂可以呢,把指数换成二进制想一想,就可以发现了。

接下来贴代码,结构体真心好用,代码好看多了~~嗯...另外做题目的时候要注意细节!!

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#define Mod 10000 struct node
{
int v[][];
int m,l;
}; node get_mul(node a,node b)
{
node c;
c.m=a.m;c.l=b.l;
for(int i=;i<=c.m;i++)
for(int j=;j<=c.l;j++)
{
c.v[i][j]=;
for(int k=;k<=a.l;k++)
c.v[i][j]=(c.v[i][j]+a.v[i][k]*b.v[k][j])%Mod;
}
return c;
} int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
int n;
while()
{
scanf("%d",&n);
if(n==) {printf("0\n");continue;}
if(n==-) break;
node a,b,c;
a.m=a.l=,a.v[][]=,a.v[][]=,a.v[][]=,a.v[][]=;
b.m=b.l=,b.v[][]=,b.v[][]=,b.v[][]=,b.v[][]=;
c.m=,c.l=,c.v[][]=,c.v[][]=;
n--;
while(n)
{
if(n&) b=get_mul(a,b);
a=get_mul(a,a);
n>>=;
}
b=get_mul(b,c);
printf("%d\n",b.v[][]);
}
return ;
}

poj3070

打表打得好恶心啊!!

2015-09-19 10:33:36

【poj3070】矩阵乘法求斐波那契数列的更多相关文章

  1. POJ 3070 - 快速矩阵幂求斐波纳契数列

    这题并不复杂. 设$A=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ 由题中公式: $\begin{pmatrix}f(n+1) & ...

  2. C# 求斐波那契数列的前10个数字 :1 1 2 3 5 8 13 21 34 55

    //C# 求斐波那契数列的前10个数字 :1 1 2 3 5 8 13 21 34 55 using System; using System.Collections.Generic; using S ...

  3. 黑马入学基础测试(三)求斐波那契数列第n项,n<30,斐波那契数列前10项为 1,1,2,3,5,8,13,21,34,55

    .获得用户的输入 计算      3打印就行了.   这里用到了java.util.Scanner   具体API  我就觉得不常用.解决问题就ok了.注意的是:他们按照流体的方式读取.而不是刻意反复 ...

  4. golang 闭包求斐波那契数列

    题目是Go指南中的闭包求斐波那契数列 package main import "fmt" // 返回一个"返回int的函数" func fibonacci() ...

  5. 用JS,求斐波那契数列第n项的值

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  6. 01-封装函数求斐波那契数列第n项

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  7. 求斐波那契数列的第n项

    问题描述:斐波那契数列是这样的一个数列,1,1,2,3,5,8,..,即前两项都是1,后面每一项都是其前面两项的和. 现在要你求出该数列的第n项. 分析:该问题是一个经典的数列问题,相信大家在很多语言 ...

  8. SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1

    5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version ...

  9. python3 求斐波那契数列(Fibonacci sequence)

    输出斐波那契数列的前多少个数. 利用函数 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:Hiuhung Wan # ----斐波那契数列( ...

随机推荐

  1. Spring MVC自定义统一异常处理类,并且在控制台中输出错误日志

    在使用SimpleMappingExceptionResolver实现统一异常处理后(参考Spring MVC的异常统一处理方法), 发现出现异常时,log4j无法在控制台输出错误日志.因此需要自定义 ...

  2. magento 操作数据库

    查:     $read = Mage::getSingleton(“core/resource”)->getConnection(‘core_read’);     $sql = “selec ...

  3. TransactionScope事务

    一个错误的理解就是Complete()方法是提交事务的,这是错误的,事实上,它的作用的表示本事务完成,它一般放在try{}的结尾处,不用判断前台操作是否成功,如果不成功,它会自己回滚. #region ...

  4. Failed to create a 'System.Type' from the text ' ' in wpf(无法从文本创建类型)

    问题描述:WPF is unable to create a type for data templateWPF使用mvvm模式无法加载DataTemplate模板定义的资源,提示无法从文本创建类型错 ...

  5. c语言中的结构体为值类型,当把一个结构体赋值给另一个结构体时,为值传递

    #include <stdio.h> int main() { struct person { int age; }; }; //值传递,将p1中所有成员变量的值赋值个p2中对应的成员变量 ...

  6. redis研究之watch

    具体的看注释,代码如下: public static void TransTest() { RedisClient client1 = new RedisClient(host, port); Red ...

  7. 八卦某 G 的前端开发方式及流程

      他山之石,可以攻玉. 话说本人从毕业到现在一直在某 B 公司工作,前些年折腾过不少开发方式和工具,但总觉得或许有更好的方案,所以很好奇其它公司内部是如何工作的,我曾经浏览过某 Y 公司内部无所不包 ...

  8. [001] winnie the pooh - 读后记

    winnie the pooh 我是在伍君仪透析英语视频培训班,获得这本书的,PDF格式的(排版不是很好,和当当上的相比有部分章节缺失) 这是我第一本采用透析法读完的英文书. 今天(2015年10月2 ...

  9. 01_JavaMail_04_带附件邮件的发送

    [工程截图] [代码实例] package com.Higgin.mail.demo; import java.io.File; import java.util.Properties; import ...

  10. C#(pronounced: see sharp) 与 .NET

    C#与.NET 一.什么是C# 这里的「#/♯」读作「sharp」,意思是「(Music, other)  (immediately postpositive) denoting a note tha ...