Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10312    Accepted Submission(s): 7318

Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

 
Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 
Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 
Sample Input
4
10
20
 
Sample Output
5
42
627
 
思路:一开始拿到这个题目以为是找规律,有递推关系什么的,最后找了好长时间没找到规律,上网查了一下才发现是用母函数做,就是把数的加法和指数乘法的幂的加法联系起来,母函数:G(x)=(1+x+x^2+x^3+x^4+.....)*(1+x^2+x^4+x^6+....)*(1+x^3+x^6+x^9+....)*... ,x^n的系数就是n的拆分方案数!其实这个不难理解,因为x^n的系数是多少就表明有多少个x^n相加得来,换句话说就是有多少种x的幂之和的拼凑方案,即本题所求。
 
#include<stdio.h>
int a[],b[]; // a[i]表示x^i的系数,为临时值,b[i]表示x^i的系数,为最终值;
int
main()
{

int
i,j,k,n;
for
(i =;i <=;i ++)
{

a[i] =;
b[i] =;
}

for
(i =;i <=;i ++)
{

for
(j =;j <=;j ++)
{

for
(k =;k+j <=; k += i)
a[k+j] += b[j]; //因为x^(k+j)是从x^j得来的,故它的系数应该在原有系数的数值的基础上加上x^j                 
                      的系数(这是关键的重点!!!这就是为什么我们要用两个数组的目的)
}

for
(j =;j <=;j ++)
{

b[j] = a[j];
a[j] =;
}
}

while
(~scanf("%d",&n))
printf("%d\n",b[n]);
  return 0;
}

Ignatius and the Princess III的更多相关文章

  1. hdu acm 1028 数字拆分Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  2. hdu 1028 Ignatius and the Princess III(DP)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  3. hdu 1028 Ignatius and the Princess III 简单dp

    题目链接:hdu 1028 Ignatius and the Princess III 题意:对于给定的n,问有多少种组成方式 思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是 ...

  4. HDOJ 1028 Ignatius and the Princess III (母函数)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. HDU1028 Ignatius and the Princess III 【母函数模板题】

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. Ignatius and the Princess III --undo

    Ignatius and the Princess III Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (J ...

  7. Ignatius and the Princess III(母函数)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  8. HDU 1028 Ignatius and the Princess III 整数的划分问题(打表或者记忆化搜索)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1028 Ignatius and the Princess III Time Limit: 2000/1 ...

  9. HDU 1028 整数拆分问题 Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

随机推荐

  1. IOS高级开发 runtime(一)

    一. 简介 IOS 开发中灵活使用runtime 会提高我们的程序性能和开发速度.要想使用runtime,首先要引入系统的头文件. <span style="font-size:18p ...

  2. SqlServer Alter Table 语句的用法

    更改 字段的数据类型 Alter Table TB_ITM_ITEM alter column is_timing int NULL; 新增字段: alter table WeiboSmartCate ...

  3. IO流中的文件创建并且写入读取

    package com.java.inoutputstreamDmeo.www; import java.io.File;import java.io.FileInputStream;import j ...

  4. 12_复杂查询01_Mapper代理实现

    [工程截图] [代码实现] [user.java] package com.Higgin.Mybatis.po; import java.util.Date; public class User { ...

  5. 2015 Multi-University Training Contest 1 题解&&总结

    ---------- HDU 5288 OO’s Sequence 题意 给定一个数列(长度<$10^5$),求有多少区间[l,r],且区间内有多少数,满足区间内其它数不是他的约数. 数的范围$ ...

  6. STL:remove和erase区别

    C++ STL中的remove和erase函数曾经让我迷惑,同样都是删除,两者有什么区别呢? vector中的remove的作用是将等于value的元素放到vector的尾部,但并不减少vector的 ...

  7. (转)Libevent(5)— 连接监听器

    转自:http://name5566.com/4220.html 参考文献列表:http://www.wangafu.net/~nickm/libevent-book/ 此文编写的时候,使用到的 Li ...

  8. 7种基本排序算法的Java实现

    7种基本排序算法的Java实现 转自我的Github 以下为7种基本排序算法的Java实现,以及复杂度和稳定性的相关信息. 以下为代码片段,完整的代码见Sort.java 插入排序 /** * 直接插 ...

  9. UEditor富文本编辑框学习

    1.首先需要引入CSS.JS <!--富文本编辑框--> <link href="${pageContext.request.contextPath}/css/plugin ...

  10. angularjs制作的iframe后台管理页切换页面

    <code> <!DOCTYPE html><html lang="zh" ng-app><head> <meta chars ...