一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差
一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差
@copyright 转载请注明出处 http://www.cnblogs.com/chxer/
涉及到概率的一个重要的操作是寻找函数的加权平均值。在概率分布p(x)下,函数f(x)的平均值被称为f(x)的期望(expectation),记作E[f]。对于一个离散变量,它的定义为:

因此平均值根据x的不同值的相对概率加权。在连续变量的情形下,期望以对应的概率密度的积分的形式表示:

类似的,我们有“条件期望”。无非就是把边缘概率变成条件概率。

在连续变量的情况下,我们把求和改成积分就好了。
如果我们给定有限数量的N 个点,这些点满足某个概率分布或者概率密度函数,那么期望可以通过平均的方式估计:

可以看出,当点数足够多,即N趋向于无穷大的时候,估计变得精准。
f(x)的方差被定义为:

方差是干什么的呢,它度量了f(x)在均值E[f(x)]附近变化性的大小。
我们可以把期望大概看成一个不错的平均值吧。
如果我们把方差展开,则会得到一个关于f(x)和f(x)2的期望的式子

。。。。。
。。。。。
。。。。。
我去,这一步的推导真是太66666666666了
太!6!了!
书里真是轻!描!淡!写!就过去了!!!!
太!6!了!
我们都是天才吗一步就能看懂!!!
太!6!了!
幸好请教了伟大的学姐,真是,无!力!吐!槽!
如果只是我的智商低,请忽略这一段,谢谢,关爱智障儿童。。。
期望的运算还真是有讲究。
书里轻描淡写的展开实际过程应该是:

其实就是几个运算律来回用:
E[A-B]=E[A]-E[B]
E[E[A]]=E[A]
E[A*B]=E[A]*E[B] (A,B相互独立时)
行吧。我服了。
要是整本书都是这些“展开”,那真是要死了。
作为一个只有高一数学基础的中学生已经很难了好不好。。。
好我们继续。
当然了,我们不仅可以关心函数,更可以关心我们的自变量本身,于是有:

有一个变量的方差,我们就有两个变量的方差,在这里我们称之为“协方差”,它是这么定义的:

看起来和方差长得一模一样。同理可以展开。
那么协方差是干什么用的呢?它表示在多大程度上x和y会共同变化。也就是说,如果x,y相互独立,x和y的协方差就是0。还记得篮子和苹果的例子吗?
有两个变量的协方差,我们就有向量的协方差,它是这么定义的:

可以看出,两个向量的协方差是个矩阵。每两个元素一一对应求协方差。
当这两个向量长得一样的时候,其实就是求自己和自己的协方差,我们有一个偷懒的记号:

那么这个表示一个向量内元素之间共同变化的程度。等以后配合上实例再谈这些应该会更好一些。
一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差的更多相关文章
- 一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布
一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ ...
- 一起啃PRML - 1.2.3 Bayesian probabilities 贝叶斯概率
一起啃PRML - 1.2.3 Bayesian probabilities 贝叶斯概率 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 这一节简单讲 ...
- 一起啃PRML - 1.2.1 Probability densities 概率密度
一起啃PRML - 1.2.1 Probability densities @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 我们之前一直在讨论“谁取到 ...
- 一起啃PRML - 1.2 Probability Theory 概率论
一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in t ...
- 一起啃PRML - 1.1 Example: Polynomial Curve Fitting 多项式曲线拟合
一起啃PRML - 1.1 Example: Polynomial Curve Fitting @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 前言: ...
- 一起啃PRML - 1 Introduction 绪论
一起啃PRML - 1 Introduction @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 这一部分主要是介绍一下Pattern Recogni ...
- 一起啃PRML - Preface 前言
一起啃PRML - 前言 Preface @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ PRML,Pattern Recognition and M ...
- PRML读书会第十二章 Continuous Latent Variables(PCA,Principal Component Analysis,PPCA,核PCA,Autoencoder,非线性流形)
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:00:49 我今天讲PRML的第十二章,连续隐变量.既然有连续隐变量,一定也有离散隐变量,那么离散隐变量是 ...
- PRML读书笔记——Introduction
1.1. Example: Polynomial Curve Fitting 1. Movitate a number of concepts: (1) linear models: Function ...
随机推荐
- J2EE、J2SE、J2ME
http://developer.51cto.com/art/200906/130453.htm 本文介绍Java的三大块:J2EE.J2SE和J2ME.J2SE就是Java2的标准版,主要用于桌面应 ...
- cocoaPods的安装和使用之详细介绍
一,在Mac OS X上安装Ruby运行环境 步骤1------安装RVM $ curl -L https://get.rvm.io | bash -s stable 然后载入RVM环境 $ sour ...
- MYSQL连接数据库
web.config <connectionStrings> <add name="MysqlDB" connectionString="Data ...
- Java的云打印Lodop
打印某一个网页上的内容我们都经常遇到过,比如网上申请港澳通行证时需要填写申请表,然后把申请表给打印出来.像这样的打印技术是怎么实现?这种打印可以通过一种叫云打印的插件来做,按我的理解云打印的技 ...
- 【BZOJ3529】【莫比乌斯反演 + 树状数组】[Sdoi2014]数表
Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...
- jquery 去掉重复项(splice,apply,push)
/* js数组去掉重复项 var somearray = [1,1,2,2,3,3,4,4,'1']; somearray.check(); //somearray will return arr=[ ...
- yii2源码学习笔记(十八)
View继承了component,用于渲染视图文件:yii2\base\View.php <?php /** * @link http://www.yiiframework.com/ * @co ...
- node 通过mongoose实现 mongodb的增删改
node 通过mongoose实现 mongodb的增删改 新建文件test.js 内容如下: var mongoose = require('mongoose') , Schema = mo ...
- setTimeout和setInterval的深入理解
以前写的setTimeout和setInterval的文章有些不足之处,今天抽时间整理了一下,要想真正理解还得从javascript的单线程机制说起 大概半年前发表过一篇关于setTimeout和se ...
- composer的create-project安装php框架laravel for mac教程
通过 Composer 的 create-project 命令安装 Laravel 通过在命令行执行 Composer 的 create-project 命令来安装Laravel: composer ...