加密算法 - RSA算法一
RSA算法原理(一)
如果你问我,哪一种算法最重要?
我可能会回答"公钥加密算法"。
因为它是计算机通信安全的基石,保证了加密数据不会被破解。你可以想象一下,信用卡交易被破解的后果。
进入正题之前,我先简单介绍一下,什么是"公钥加密算法"。
一、一点历史
1976年以前,所有的加密方法都是同一种模式:
(1)甲方选择某一种加密规则,对信息进行加密;
(2)乙方使用同一种规则,对信息进行解密。
由于加密和解密使用同样规则(简称"密钥"),这被称为"对称加密算法"(Symmetric-key algorithm)。
这种加密模式有一个最大弱点:甲方必须把加密规则告诉乙方,否则无法解密。保存和传递密钥,就成了最头疼的问题。
1976年,两位美国计算机学家Whitfield Diffie 和 Martin Hellman,提出了一种崭新构思,可以在不直接传递密钥的情况下,完成解密。这被称为"Diffie-Hellman密钥交换算法"。这个算法启发了其他科学家。人们认识到,加密和解密可以使用不同的规则,只要这两种规则之间存在某种对应关系即可,这样就避免了直接传递密钥。
这种新的加密模式被称为"非对称加密算法"。
(1)乙方生成两把密钥(公钥和私钥)。公钥是公开的,任何人都可以获得,私钥则是保密的。
(2)甲方获取乙方的公钥,然后用它对信息加密。
(3)乙方得到加密后的信息,用私钥解密。
如果公钥加密的信息只有私钥解得开,那么只要私钥不泄漏,通信就是安全的。
1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。从那时直到现在,RSA算法一直是最广为使用的"非对称加密算法"。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。
这种算法非常可靠,密钥越长,它就越难破解。根据已经披露的文献,目前被破解的最长RSA密钥是768个二进制位。也就是说,长度超过768位的密钥,还无法破解(至少没人公开宣布)。因此可以认为,1024位的RSA密钥基本安全,2048位的密钥极其安全。
下面,我就进入正题,解释RSA算法的原理。文章共分成两部分,今天是第一部分,介绍要用到的四个数学概念。你可以看到,RSA算法并不难,只需要一点数论知识就可以理解。
二、互质关系
如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是互质关系(coprime)。比如,15和32没有公因子,所以它们是互质关系。这说明,不是质数也可以构成互质关系。
关于互质关系,不难得到以下结论:
1. 任意两个质数构成互质关系,比如13和61。
2. 一个数是质数,另一个数只要不是前者的倍数,两者就构成互质关系,比如3和10。
3. 如果两个数之中,较大的那个数是质数,则两者构成互质关系,比如97和57。
4. 1和任意一个自然数是都是互质关系,比如1和99。
5. p是大于1的整数,则p和p-1构成互质关系,比如57和56。
6. p是大于1的奇数,则p和p-2构成互质关系,比如17和15。
三、欧拉函数
请思考以下问题:
任意给定正整数n,请问在小于等于n的正整数之中,有多少个与n构成互质关系?(比如,在1到8之中,有多少个数与8构成互质关系?)
计算这个值的方法就叫做欧拉函数,以φ(n)表示。在1到8之中,与8形成互质关系的是1、3、5、7,所以 φ(n) = 4。
φ(n) 的计算方法并不复杂,但是为了得到最后那个公式,需要一步步讨论。
第一种情况
如果n=1,则 φ(1) = 1 。因为1与任何数(包括自身)都构成互质关系。
第二种情况
如果n是质数,则 φ(n)=n-1 。因为质数与小于它的每一个数,都构成互质关系。比如5与1、2、3、4都构成互质关系。
第三种情况
如果n是质数的某一个次方,即 n = p^k (p为质数,k为大于等于1的整数),则
比如 φ(8) = φ(2^3) =2^3 - 2^2 = 8 -4 = 4。
这是因为只有当一个数不包含质数p,才可能与n互质。而包含质数p的数一共有p^(k-1)个,即1×p、2×p、3×p、...、p^(k-1)×p,把它们去除,剩下的就是与n互质的数。
上面的式子还可以写成下面的形式:
可以看出,上面的第二种情况是 k=1 时的特例。
第四种情况
如果n可以分解成两个互质的整数之积,
n = p1 × p2
则
φ(n) = φ(p1p2) = φ(p1)φ(p2)
即积的欧拉函数等于各个因子的欧拉函数之积。比如,φ(56)=φ(8×7)=φ(8)×φ(7)=4×6=24。
这一条的证明要用到"中国剩余定理",这里就不展开了,只简单说一下思路:如果a与p1互质(a<p1),b与p2互质(b<p2),c与p1p2互质(c<p1p2),则c与数对 (a,b) 是一一对应关系。由于a的值有φ(p1)种可能,b的值有φ(p2)种可能,则数对 (a,b) 有φ(p1)φ(p2)种可能,而c的值有φ(p1p2)种可能,所以φ(p1p2)就等于φ(p1)φ(p2)。
第五种情况
因为任意一个大于1的正整数,都可以写成一系列质数的积。
根据第4条的结论,得到
再根据第3条的结论,得到
也就等于
这就是欧拉函数的通用计算公式。比如,1323的欧拉函数,计算过程如下:
四、欧拉定理
欧拉函数的用处,在于欧拉定理。"欧拉定理"指的是:
如果两个正整数a和n互质,则n的欧拉函数 φ(n) 可以让下面的等式成立:
也就是说,a的φ(n)次方被n除的余数为1。或者说,a的φ(n)次方减去1,可以被n整除。比如,3和7互质,而7的欧拉函数φ(7)等于6,所以3的6次方(729)减去1,可以被7整除(728/7=104)。
欧拉定理的证明比较复杂,这里就省略了。我们只要记住它的结论就行了。
欧拉定理可以大大简化某些运算。比如,7和10互质,根据欧拉定理,
已知 φ(10) 等于4,所以马上得到7的4倍数次方的个位数肯定是1。
因此,7的任意次方的个位数(例如7的222次方),心算就可以算出来。
欧拉定理有一个特殊情况。
假设正整数a与质数p互质,因为质数p的φ(p)等于p-1,则欧拉定理可以写成
这就是著名的费马小定理。它是欧拉定理的特例。
欧拉定理是RSA算法的核心。理解了这个定理,就可以理解RSA。
五、模反元素
还剩下最后一个概念:
如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1。
这时,b就叫做a的"模反元素"。
比如,3和11互质,那么3的模反元素就是4,因为 (3 × 4)-1 可以被11整除。显然,模反元素不止一个, 4加减11的整数倍都是3的模反元素 {...,-18,-7,4,15,26,...},即如果b是a的模反元素,则 b+kn 都是a的模反元素。
欧拉定理可以用来证明模反元素必然存在。
可以看到,a的 φ(n)-1 次方,就是a的模反元素。
==========================================
好了,需要用到的数学工具,全部介绍完了。RSA算法涉及的数学知识,就是上面这些,下一次我就来介绍公钥和私钥到底是怎么生成的。
加密算法 - RSA算法一的更多相关文章
- RSA算法一:数学原理
- 非对称加密算法RSA
RSA公钥加密算法是1977年由罗纳德·李维斯特(Ron Rivest).阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的.1987年首次公布,当时他们 ...
- 非对称加密算法-RSA算法
一.概述 1.RSA是基于大数因子分解难题.目前各种主流计算机语言都支持RSA算法的实现 2.java6支持RSA算法 3.RSA算法可以用于数据加密和数字签名 4.RSA算法相对于DES/AES等对 ...
- 非对称加密算法RSA 学习
非对称加密算法RSA 学习 RSA加密算法是一种非对称加密算法.RSA是1977年由罗纳德·李维斯特(Ron Rivest).阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Ad ...
- 加密算法——RSA算法(c++简单实现)
RSA算法原理转自:https://www.cnblogs.com/idreamo/p/9411265.html C++代码实现部分为本文新加 RSA算法简介 RSA是最流行的非对称加密算法之一.也被 ...
- Java加密算法 RSA
Java加密算法 RSA 2015-06-06 08:44 511人阅读 评论(0) 收藏 举报 分类: JAVA(57) 公钥加密也称为非对称加密.速度慢.加密和解密的钥匙不相同,某一个人持有私 ...
- 非对称加密算法RSA使用注意事项
原文:非对称加密算法RSA使用注意事项 第一个问题,也是最重要的一个——RSA无法对超过117字节的数据进行加密!切记!其实也勿需要求对更大数据的加密,虽然网上已经有相关解决方案,比如BigInteg ...
- Java进阶(七)Java加密技术之非对称加密算法RSA
Java加密技术(四)--非对称加密算法RSA 非对称加密算法--RSA 基本概念 非对称加密算法是一种密钥的保密方法. 非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(priv ...
- JAVA 非对称加密算法RSA
非对称加密算法 RSA过程 : 以甲乙双方为例 1.初始化密钥 构建密钥对,生成公钥.私钥保存到keymap中 KeyPairGenerator ---> KeyPair --> RSAP ...
随机推荐
- Ubuntu设置目录的读写权限(Linux命令chmod 777 dirName)
更改文件所有者 sudo chown system_username /location_of_files_or_folders 更改文件的权限 鼠标右按钮点击文件/目录 -> 属性 权限 分页 ...
- Top 10 questions about Java Collections--reference
reference from:http://www.programcreek.com/2013/09/top-10-questions-for-java-collections/ The follow ...
- 转:ORACLE制造方法的比较
转自:http://blog.itpub.net/133041/viewspace-438549/ 1.离散制造. 2.重复制造 3.流式制造 Oracle Applications 支持离散.项目. ...
- 运用json-lib生成特定json
在实现接口过程中,一般协议都是定义数据格式为json.我们有时候需要把bean转换为JSON输出给接口调用者,但是可能存在bean中的字段有些不是接口定义所需要的.这个时候需要我们对JSON转换是需要 ...
- linux中的openoffice服务终止运行
现象: 最近的linux中的openoffice服务进程运行一段时间后会自动停止,刚开始还以为忘了启动执行自启动脚本导致的.在连续出现前述情况后,开始查找应用程序崩溃的原因,首先查看linux服务器的 ...
- IT牛人博客
IT牛人博客,参见:http://blog.csdn.net/freebird_lb/article/details/8210276 团队技术博客 淘宝UED淘宝用户体验团队 淘宝核心系统淘宝核心系统 ...
- Mybatis特殊字符处理,Mybatis中xml文件特殊字符的处理
Mybatis特殊字符处理,Mybatis中xml文件特殊字符的处理 >>>>>>>>>>>>>>>>& ...
- 安卓SQLite数据库操作,半小时开发新闻管理系统,纯干货
本教程致力于可以快速的学习安卓软件开发,希望能通过一系列自己手写的教程,帮助正在学习或想要学习安卓开发的同仁. 本教程由今日头条-全栈攻城狮号首发,都是一个字一个字码的.请尊重劳动成果,转载请注明出处 ...
- 学习笔记_Java get和post区别(转载_GET一般用于获取/查询资源信息,而POST一般用于更新资源信息)
转载自:[hyddd(http://www.cnblogs.com/hyddd/)] 总结一下, Get是向服务器发索取数据的一种请求 而Post是向服务器提交数据的一种请求,在F ...
- (五)Hibernate 操作对象
所有项目导入对应的hibernate的jar包.mysql的jar包和添加每次都需要用到的HibernateUtil.java 第一节:Hibernate 中四种对象状态 临时状态(transient ...