Description

Alan loves to construct the towers of building bricks. His towers consist of many cuboids with square base. All cuboids have the same height \(h = 1\). Alan puts the consecutive cuboids one over another:

Recently in math class, the concept of volume was introduced to Alan. Consequently, he wants to compute the volume of his tower now. The lengths of cuboids bases (from top to bottom) are constructed by Alan in the following way:

  1. Length \(a_{1}\) of the first square is one.
  2. Next, Alan fixes the length \(a_{2}\) of the second square.
  3. Next, Alan calculates the length \(a_{n} (n > 2)\) by \(2 \times a2 \times (a_{n-1})-(a_{n-2})\). Do not ask why he chose such a formula; let us just say that he is a really peculiar young fellow. For example, if Alan fixes \(a_{2} = 2\), then \(a_3 = 8 -a_1 = 7\); see Figure 1. If Alan fixes \(a_2 = 1\), then \(a_n = 1\) holds for all n belong to N; see Figure 2.

    Now Alan wonders if he can calculate the volume of tower of \(N\) consecutive building bricks. Help Alan and write the program that computes this volume. Since it can be quite large, it is enough to compute the answer modulo given natural number \(m\).

Input

The input contains several test cases. The first line contains the number t (t <= 10^5) denoting the number of test cases. Then t test cases follow. Each of them is given in a separate line containing three integers \(a2,N,m\) \((1 \le a_2,m \le 10^9, 2 \le N \le 10^9)\) separated by a single space, where \(a_2\) denotes the fixed length of second square in step \(2\), while \(N\) denotes the number of bricks constructed by Alan.

Output

For each test case \((a_2,N,m)\) compute the volume of tower of \(N\) consecutive bricks constructed by Alan according to steps \((1-3)\) and output its remainder modulo \(m\).

Sample Input

3

2 3 100

1 4 1000

3 3 1000000000

Sample Output

54

4

299

SB矩阵乘法。另\(p = 2a_2\)把公式写写$$a_n^2 = p2a_{n-1}2-2pa_{n-1}a_{n-2}$$

\[S_n = S_{n-1}+a_n^2
\]

\[2pa_na_{n-1} = 2p^2a_{n-1}^2-2pa_{n-1}a_{n-2}
\]

然后我们的初始矩阵$$A = (a_n^2 \quad a_{n-1}^2 \quad a_{n-1}a_{n-2} \quad S_{n-1})$$,然后就可以线性递推了。

#include<cstring>
#include<cstdio>
#include<cstdlib>
using namespace std; typedef long long ll;
int d,N,rhl,T; struct Matrix
{
int a[4][4],n,m;
inline Matrix() { memset(a,0,sizeof(a)); }
friend inline Matrix operator *(const Matrix &x,const Matrix &y)
{
Matrix ret; ret.n = x.n; ret.m = y.m;
for (int i = 0;i < ret.n;++i)
for (int j = 0;j < ret.m;++j)
for (int k = 0;k < x.m;++k)
{
ret.a[i][j] += (ll)x.a[i][k]*(ll)y.a[k][j]%rhl;
if (ret.a[i][j] >= rhl) ret.a[i][j] -= rhl;
}
return ret;
}
}st,mul,ans; inline Matrix qsm(Matrix a,int b)
{
Matrix ret; ret.n = ret.m = a.n;
for (int i = 0;i < ret.n;++i) ret.a[i][i] = 1;
for (;b;b >>= 1,a = a*a) if (b & 1) ret = ret*a;
return ret;
} inline void work()
{
st.n = 1; st.m = 4;
st.a[0][0] = (ll)d*(ll)d%rhl; st.a[0][1] = 1;
st.a[0][2] = d; st.a[0][3] = 1; mul.n = mul.m = 4;
mul.a[0][0] = (ll)(2*d)*(ll)(2*d)%rhl; mul.a[0][1] = 1; mul.a[0][2] = (2*d)%rhl; mul.a[0][3] = 1;
mul.a[1][0] = 1;
mul.a[2][0] = ((ll)(-4)*(ll)d%rhl)+rhl; mul.a[2][2] = rhl-1;
mul.a[3][3] = 1; ans = st*qsm(mul,N-1);
printf("%d\n",ans.a[0][3]);
} int main()
{
freopen("2971.in","r",stdin);
freopen("2971.out","w",stdout);
scanf("%d",&T);
while (T--)
{
scanf("%d %d %d",&d,&N,&rhl);
if (N == 1) puts("1");
else if (N == 2) printf("%d\n",((ll)d*(ll)d+1LL)%rhl);
else work();
}
fclose(stdin); fclose(stdout);
return 0;
}

Hdu 2971 Tower的更多相关文章

  1. hdu 5779 Tower Defence

    题意:考虑由$n$个结点构成的无向图,每条边的长度均为$1$,问有多少种构图方法使得结点$1$与任意其它节点之间的最短距离均不等于$k$(无法到达时距离等于无穷大),输出答案对$1e9+7$取模.$1 ...

  2. hdu 4779 Tower Defense (思维+组合数学)

    Tower Defense Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) ...

  3. 动态规划(树形DP):HDU 5886 Tower Defence

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA2MAAAERCAIAAAB5Jui9AAAgAElEQVR4nOy9a6wsS3YmFL/cEkh4LP

  4. hdu 4779 Tower Defense 2013杭州现场赛

    /** 题意: 有两种塔,重塔,轻塔.每种塔,能攻击他所在的一行和他所在的一列, 轻塔不 能被攻击,而重塔可以被至多一个塔攻击,也就是说重塔只能被重塔攻击.在一个n*m 的矩阵中,最少放一个塔,可放多 ...

  5. HDU 5886 Tower Defence

    树的直径. 比赛的时候想着先树$dp$处理子树上的最长链和次长链,然后再从上到下进行一次$dfs$统计答案,和$CCPC$网络赛那个树$dp$一样,肯定是可以写的,但会很烦.......后来写崩了. ...

  6. HDU 5886 Tower Defence(2016青岛网络赛 I题,树的直径 + DP)

    题目链接  2016 Qingdao Online Problem I 题意  在一棵给定的树上删掉一条边,求剩下两棵树的树的直径中较长那的那个长度的期望,答案乘上$n-1$后输出. 先把原来那棵树的 ...

  7. The Tower HDU - 6559 (解析几何)

    The Tower HDU - 6559 The Tower shows a tall tower perched on the top of a rocky mountain. Lightning ...

  8. dp --- hdu 4939 : Stupid Tower Defense

    Stupid Tower Defense Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  9. HDU 4939 Stupid Tower Defense(dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4939 解题报告:一条长度为n的线路,路上的每个单元格可以部署三种塔来给走在这条路上的敌人造成伤害,第一 ...

随机推荐

  1. 关于Bufferedreader的功能扩写

    package cn.hncu.pattern.decorator.v1; import java.io.FileReader;import java.io.IOException; public c ...

  2. HttpClient 通过域名访问请求接口出现java.net.UnknownHostException解决方法

    在项目中,有一个功能需要请求另外一个项目的接口来获取数据.该项目接口都是通过域名请求访问.每当调用到一定阶段后都会出现未知域名,导致请求数据失败.以下是错误内容 java.net.UnknownHos ...

  3. Linux常用系统调用

    转载 http://www.ibm.com/developerworks/cn/linux/kernel/syscall/part1/appendix.html#icomments 按照惯例,这个列表 ...

  4. 整理SVN代码-->正式环境的代码

    最近我被分配到了合并正式补丁代码的工作.聊聊整个流程 第一步解压补丁

  5. DevExpres表格控件运行时动态设置表格列

    本文是系列文章,陆续发表于电脑编程技巧与维护杂志. DevExpres产品是全球享有极高声誉的一流控件套包产品!国内典型用户包括:用友.金蝶.神州数码.工信部.中国石化.汉王科技等众多大中型科技型企业 ...

  6. hadoop_集群安装_2

    由于上一篇文章http://www.cnblogs.com/inuyasha1027/p/hadoop_cluster_install_1.html 截图太多,占用了太多的地方,所以将VMTools ...

  7. C++ Dialog Box Command IDs

    #define IDOK 1 #define IDCANCEL 2 #define IDABORT 3 #define IDRETRY 4 #define IDIGNORE 5 #define IDY ...

  8. frame 第三节

    1.准备3个文件 main.html: <html> <head> <title>框架</title> </head> <frames ...

  9. Oracle 10g创建表空间的完整步骤详解

    本文我们主要介绍了Oracle 10g创建表空间的完整步骤,包括表空间的创建与删除.为应用创建用户以及权限的授予等操作,希望能够对您有所帮助. AD:WOT2014:用户标签系统与用户数据化运营培训专 ...

  10. LA 3708 Graveyard(推理 参考系 中位数)

    Graveyard Programming contests became so popular in the year 2397 that the governor of New Earck -- ...