//只用一行核心代码就可以过的天坑题目............= =

题目:

Description

Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers among these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be only of theoretical interest. 
This problem involves the efficient computation of integer roots of numbers. 
Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the n th. power, for an integer k (this integer is what your program must find).

Input

The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs 1<=n<= 200, 1<=p<10 101 and there exists an integer k, 1<=k<=10 9 such that k n = p.

Output

For each integer pair n and p the value k should be printed, i.e., the number k such that k n =p.

Sample Input

2 16
3 27
7 4357186184021382204544

Sample Output

4
3
1234
 
哎~不多说了,代码如下:
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
double n,p;
while(cin>>n>>p)
{
cout<<pow(p,/n)<<endl;
}
return ;
}

 正解:二分+高精
代码:
 #include <stdio.h>
#include <string.h> // 交换字符串函数
void swap_str(char str[]) {
int len = strlen(str);
for (int i=; i<len/; i++) {
int tmp = str[i];
str[i] = str[len-i-];
str[len-i-] = tmp;
}
} // 大数与整型相乘函数(大数以字符串形式给出)
void my_mul(char str[], int x) {
int len = strlen(str);
int cp = , i, tmp;
swap_str(str);
for (i=; i<len; i++) {
tmp = (str[i]-'')*x + cp;
str[i] = (tmp%) + '';
cp = tmp / ;
}
while (cp) {
str[i++] = (cp%) + '';
cp /= ;
}
while (''==str[i-] && i>)
i--;
str[i] = '\0';
swap_str(str);
}
// 比较两个大数的大小(大数前没有0)
int my_numCmp(char str1[], char str2[]) {
int len1, len2;
len1 = strlen(str1);
len2 = strlen(str2);
if (len1 > len2)
return ;
if (len1 < len2)
return -;
return strcmp(str1, str2);
} // 字符串存储开方结果
void my_pow(char str[], int k, int n) {
str[] = '', str[] = '\0';
while (n--) {
my_mul(str, k);
}
} // 二分查找正确答案
int my_binary_search(int n, char str[]) {
int high = 1e9, low = ;
int mid;
char tot[]; while (low < high) {
mid = low + (high-low)/;
my_pow(tot, mid, n);
int tmp = my_numCmp(tot, str);
if ( == tmp)
return mid;
if (tmp < )
low = mid + ;
else
high = mid;
}
return mid;
} int main() {
char str[];
int n;
while (scanf("%d%s", &n, str) != EOF) {
printf("%d\n", my_binary_search(n, str));
}
return ;
}

代码来源:http://blog.csdn.net/zcube/article/details/8545523

Power of Cryptography的更多相关文章

  1. [POJ2109]Power of Cryptography

    [POJ2109]Power of Cryptography 试题描述 Current work in cryptography involves (among other things) large ...

  2. Power of Cryptography(用double的泰勒公式可行分析)

    Power of Cryptography Time limit: 3.000 seconds http://uva.onlinejudge.org/index.php?option=com_onli ...

  3. 贪心 POJ 2109 Power of Cryptography

    题目地址:http://poj.org/problem?id=2109 /* 题意:k ^ n = p,求k 1. double + pow:因为double装得下p,k = pow (p, 1 / ...

  4. poj 2109 Power of Cryptography

    点击打开链接 Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16388   Ac ...

  5. UVA 113 Power of Cryptography (数学)

    Power of Cryptography  Background Current work in cryptography involves (among other things) large p ...

  6. Poj 2109 / OpenJudge 2109 Power of Cryptography

    1.Link: http://poj.org/problem?id=2109 http://bailian.openjudge.cn/practice/2109/ 2.Content: Power o ...

  7. POJ2109——Power of Cryptography

    Power of Cryptography DescriptionCurrent work in cryptography involves (among other things) large pr ...

  8. POJ 2109 :Power of Cryptography

    Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 18258   Accepted: ...

  9. POJ 2109 -- Power of Cryptography

    Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 26622   Accepted: ...

  10. POJ 2109 Power of Cryptography 数学题 double和float精度和范围

    Power of Cryptography Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 21354 Accepted: 107 ...

随机推荐

  1. CSS伪类对象before和after的用法

    一直感觉这两个伪类对象不是很重要,并且IE对它两兄弟并不支持,所以也没有怎么静下心来研究,只有在清楚浮动clearfix的时候会用到哈,其他都很 少用!不过最近在研究css3的时候觉得它两个的搭配不仅 ...

  2. session 保存在指定的数据表,cookie设置

    首先建立数据表,可在ThinkPHP/Extend/Driver/Session/SessionDb.class.php中copy代码 在配置文件中配置: 'SESSION_TYPE' => ' ...

  3. C#基础(二)——C#中的构造函数

    构造函数主要是用来创建对象时为对象赋初值来初始化对象.总与new运算符一起使用在创建对象的语句中 .A a=new A(); 构造函数具有和类一样的名称:但它是一个函数具有函数的所有特性,同一个类里面 ...

  4. Invoke()方法的使用

    在多线程编程中,我们经常要在工作线程中去更新界面显示,而在多线程中直接调用界面控件的方法是错误的做法,Invoke 和 BeginInvoke 就是为了解决这个问题而出现的,使你在多线程中安全的更新界 ...

  5. winform模拟鼠标按键

    今天朋友说被他们公司的学习网站恶心到了,下班后要他看学习资料,看完点下一页,而且一页必须停留多少时间才能点击下一页,想不看都不行,于是晚上我突发奇想要给他做一个模拟鼠标按键的程序,可以让鼠标定时间隔触 ...

  6. 转载:Source Insight查看ARM汇编源程序 && 高亮显示程序 && Source Insight打开project窗口出错

    (1)Source Insight查看ARM汇编源程序.做ARM嵌入式开发时,有时得整汇编代码,但在SIS里建立PROJECT并ADD TREE的时候,根据默认设置并不会把该TREE里面所有汇编文件都 ...

  7. SDUT 1305 查找基因序列问题 dp

    题目: http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=1305 这个题就是一个类似公共子串的dp ...

  8. 实现CodeFirst自动数据迁移无需命令

    本主题假设您掌握了实体框架中 Code First 迁移的基本知识. 借助自动迁移功能,您无需对您所做的每一个更改都在程序包管理器控制台中运行Update-Database 命令. 启用迁移 只需执行 ...

  9. C# net部署图片分布式存储服务器的小案例

    如果web服务用户多了,访问多了,用户上传的图片,文件等内容放在一块,想必服务器是承受不住的,这个时候,我们就需要考虑分布式存储的方法了. 如图所示:一个web服务器拖2个图片服务器 如何做到用户上传 ...

  10. bzoj 1200: [HNOI2005]木梳 DP

    1200: [HNOI2005]木梳 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 266  Solved: 125[Submit][Status] ...