//只用一行核心代码就可以过的天坑题目............= =

题目:

Description

Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers among these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be only of theoretical interest. 
This problem involves the efficient computation of integer roots of numbers. 
Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the n th. power, for an integer k (this integer is what your program must find).

Input

The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs 1<=n<= 200, 1<=p<10 101 and there exists an integer k, 1<=k<=10 9 such that k n = p.

Output

For each integer pair n and p the value k should be printed, i.e., the number k such that k n =p.

Sample Input

2 16
3 27
7 4357186184021382204544

Sample Output

4
3
1234
 
哎~不多说了,代码如下:
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
double n,p;
while(cin>>n>>p)
{
cout<<pow(p,/n)<<endl;
}
return ;
}

 正解:二分+高精
代码:
 #include <stdio.h>
#include <string.h> // 交换字符串函数
void swap_str(char str[]) {
int len = strlen(str);
for (int i=; i<len/; i++) {
int tmp = str[i];
str[i] = str[len-i-];
str[len-i-] = tmp;
}
} // 大数与整型相乘函数(大数以字符串形式给出)
void my_mul(char str[], int x) {
int len = strlen(str);
int cp = , i, tmp;
swap_str(str);
for (i=; i<len; i++) {
tmp = (str[i]-'')*x + cp;
str[i] = (tmp%) + '';
cp = tmp / ;
}
while (cp) {
str[i++] = (cp%) + '';
cp /= ;
}
while (''==str[i-] && i>)
i--;
str[i] = '\0';
swap_str(str);
}
// 比较两个大数的大小(大数前没有0)
int my_numCmp(char str1[], char str2[]) {
int len1, len2;
len1 = strlen(str1);
len2 = strlen(str2);
if (len1 > len2)
return ;
if (len1 < len2)
return -;
return strcmp(str1, str2);
} // 字符串存储开方结果
void my_pow(char str[], int k, int n) {
str[] = '', str[] = '\0';
while (n--) {
my_mul(str, k);
}
} // 二分查找正确答案
int my_binary_search(int n, char str[]) {
int high = 1e9, low = ;
int mid;
char tot[]; while (low < high) {
mid = low + (high-low)/;
my_pow(tot, mid, n);
int tmp = my_numCmp(tot, str);
if ( == tmp)
return mid;
if (tmp < )
low = mid + ;
else
high = mid;
}
return mid;
} int main() {
char str[];
int n;
while (scanf("%d%s", &n, str) != EOF) {
printf("%d\n", my_binary_search(n, str));
}
return ;
}

代码来源:http://blog.csdn.net/zcube/article/details/8545523

Power of Cryptography的更多相关文章

  1. [POJ2109]Power of Cryptography

    [POJ2109]Power of Cryptography 试题描述 Current work in cryptography involves (among other things) large ...

  2. Power of Cryptography(用double的泰勒公式可行分析)

    Power of Cryptography Time limit: 3.000 seconds http://uva.onlinejudge.org/index.php?option=com_onli ...

  3. 贪心 POJ 2109 Power of Cryptography

    题目地址:http://poj.org/problem?id=2109 /* 题意:k ^ n = p,求k 1. double + pow:因为double装得下p,k = pow (p, 1 / ...

  4. poj 2109 Power of Cryptography

    点击打开链接 Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16388   Ac ...

  5. UVA 113 Power of Cryptography (数学)

    Power of Cryptography  Background Current work in cryptography involves (among other things) large p ...

  6. Poj 2109 / OpenJudge 2109 Power of Cryptography

    1.Link: http://poj.org/problem?id=2109 http://bailian.openjudge.cn/practice/2109/ 2.Content: Power o ...

  7. POJ2109——Power of Cryptography

    Power of Cryptography DescriptionCurrent work in cryptography involves (among other things) large pr ...

  8. POJ 2109 :Power of Cryptography

    Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 18258   Accepted: ...

  9. POJ 2109 -- Power of Cryptography

    Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 26622   Accepted: ...

  10. POJ 2109 Power of Cryptography 数学题 double和float精度和范围

    Power of Cryptography Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 21354 Accepted: 107 ...

随机推荐

  1. 诡异的XmlSerializer属性字段Specified

    自动生成代码时,往往会为一个字段假设为 * , 生成另一个bool型字段: *Specified: 如: [Serializable] public class A { [XmlElement] pu ...

  2. WinForm TreeView 三种状态

    private void treeView1_NodeMouseClick(object sender, TreeNodeMouseClickEventArgs e) { var node = e.N ...

  3. Cassandra1.2文档学习(1)——Cassandra基本说明

    参考文档:http://www.datastax.com/documentation/cassandra/1.2/webhelp/index.html#cassandra/architecture/a ...

  4. HTML 表格的书写方式:

    首先要进行reset  table{border-collapse:collapse;border-spacing:0;}th{text-align:inherit;} 1. caption标签对整个 ...

  5. 常见排序算法(PHP实现)

    function InsertSort($arr){ $num = count($arr); for($i = 1; $i < $num; $i++){ $key = $arr[$i]; for ...

  6. JS实现精确加减乘除

    说明:项目中要使用 JS 实现自动计算的功能,进行一些浮点数运算时,计算结果却是一长串的值,这里提供一个解决方法,问题基本上可以解决. 具体代码如下: //加法函数 function accAdd(a ...

  7. 排名第一、第二的OCR软件

    排名第一.第二的OCR软件 第一:ABBYY FineReader      OCR世界排名第一,在俄罗斯获国际科技大奖奖超过卡巴斯基! 不仅仅只是文字识别,还能表格识别,版面还原,字体识别,文档结构 ...

  8. Android 基础知识点(持续更新)

    一.AndroidManifest 每一个安卓工程都有AndroidManifest.xml的配置文件,在所有项目中该名称都不会变.该文件是Android工程的一个全局配置文件,所有在Android中 ...

  9. SectionIndexer中的getSectionForPosition()与getPositionForSection()

    大家在做字母索引的时候常常会用到SectionIndexer这个类,里面有2个重要的方法 1.   getSectionForPosition()通过该项的位置,获得所在分类组的索引号 2. getP ...

  10. reviewboard搭建

    reviewboard的搭建 系统:fedora 19 内核版本:3.9.5-301.fc19.x86_64 步骤 命令 备注 安装mysql # yum -y install mysql mysql ...