Rectangles

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 19299    Accepted Submission(s): 6255

Problem Description

Given two rectangles and the coordinates of two points on the diagonals of each rectangle,you have to calculate the area of the intersected part of two rectangles. its sides are parallel to OX and OY .

Input

Input The first line of input is 8 positive numbers which indicate the coordinates of four points that must be on each diagonal.The 8 numbers are x1,y1,x2,y2,x3,y3,x4,y4.That means the two points on the first rectangle are(x1,y1),(x2,y2);the other two points on the second rectangle are (x3,y3),(x4,y4).

Output

Output For each case output the area of their intersected part in a single line.accurate up to 2 decimal places.

Sample Input

1.00 1.00 3.00 3.00 2.00 2.00 4.00 4.00
5.00 5.00 13.00 13.00 4.00 4.00 12.50 12.50

Sample Output

1.00
56.25

Author

seeyou

Source

校庆杯Warm Up

Recommend

linle   |   We have carefully selected several similar problems for you:  20572058206220602059

Statistic | Submit | Discuss | Note

这道题乍一看挺复杂,但是是有技巧的。只需要将4个横坐标和4个纵坐标排序然后就可简化成一种很容易计算的形式。还要注意首先要排除没有交叉部分的情况。

 #include<stdio.h>
#include<algorithm>
using namespace std; int main()
{
double x[], y[];
while(~scanf("%lf%lf%lf%lf%lf%lf%lf%lf", &x[], &y[], &x[], &y[], &x[], &y[], &x[], &y[])) {
double minx1 = min(x[], x[]), maxx1 = max(x[], x[]), minx2 = min(x[], x[]), maxx2 = max(x[], x[]);
double miny1 = min(y[], y[]), maxy1 = max(y[], y[]), miny2 = min(y[], y[]), maxy2 = max(y[], y[]);
if(minx1 >= maxx2 || maxx1 <= minx2 || maxy1 <= miny2 || miny1 >= maxy2) printf("%.2lf\n", );
else {
sort(x, x + );
sort(y, y + );
printf("%.2lf\n", (x[] - x[]) * (y[] - y[]));
}
}
}

HDU2056(rectangles)的更多相关文章

  1. HDU100题简要题解(2050~2059)

    HDU2050 折线分割平面 题目链接 Problem Description 我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目.比如,一条折线可以 ...

  2. poj-1314 Finding Rectangles

    题目地址: http://poj.org/problem?id=1314 题意: 给出一串的点,有些点可以构成正方形,请按照字符排序输出. 因为这道题的用处很大, 最近接触的cv 中的Rectangl ...

  3. [ACM_暴力][ACM_几何] ZOJ 1426 Counting Rectangles (水平竖直线段组成的矩形个数,暴力)

    Description We are given a figure consisting of only horizontal and vertical line segments. Our goal ...

  4. codeforces 713B B. Searching Rectangles(二分)

    题目链接: B. Searching Rectangles time limit per test 1 second memory limit per test 256 megabytes input ...

  5. White Rectangles[HDU1510]

    White Rectangles Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  6. Java基础之在窗口中绘图——绘制直线和矩形(Sketcher 2 drawing lines and rectangles)

    控制台程序. import javax.swing.JComponent; import java.util.*; import java.awt.*; import java.awt.geom.*; ...

  7. Counting Rectangles

    Counting Rectangles Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 1043 Accepted: 546 De ...

  8. UVA 10574 - Counting Rectangles 计数

    Given n points on the XY plane, count how many regular rectangles are formed. A rectangle is regular ...

  9. Project Euler 85 :Counting rectangles 数长方形

    Counting rectangles By counting carefully it can be seen that a rectangular grid measuring 3 by 2 co ...

随机推荐

  1. Linux shell入门基础(四)

    四.进程优先级前台后台 01.进程控制 #find /name aaa & #ps aux | grep find #updatedb &  #ps aux | grep update ...

  2. 分析器错误消息: 未能加载文件或程序集“System.WEB.DataVisualization, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35”或它的某一个依赖项。系统找不到指定的文件。

    分析器错误消息: 未能加载文件或程序集“System.WEB.DataVisualization, Version=3.5.0.0, Culture=neutral, PublicKeyToken=3 ...

  3. AmazeUI 模态框封装

    /** * 模态窗口 */ window.Modal = { tpls:{ alert:'<div class="am-modal am-modal-alert" tabin ...

  4. Directive Definition Object

    不知道为什么这个我并没有想翻译过来的欲望,或许我并没有都看熟透,不好误人子弟,原版奉上. Here's an example directive declared with a Directive D ...

  5. Android开发手记(24) Log的使用及颜色的更改

    在程序开发过程中,LOG是广泛使用的用来记录程序执行过程的机制,它既可以用于程序调试,也可以用于产品运营中的事件记录.在Android系统中,提供了简单.便利的LOG机制,开发人员可以方便地使用.本文 ...

  6. javascript基础学习(十三)

    javascript之文档对象 学习要点: 文档对象 文档对象的应用 一.文档对象 Document对象是代表一个浏览器窗口或框架中的显示HTML文件的对象.javascript会为每个HTML文档自 ...

  7. WBS说明

    work breakdown structure(WBS) 工作分解结构 (英语:Work Breakdown Structure, WBS)是一个详尽的,层次的(从全面到细节)的树形结构,由可交付成 ...

  8. 学习用CMake来编写Qt程序

    最近开始学习CMake,因为项目需求需要用到Qt,自带的qmake会出现许多问题(比如文件修改之后有时候qmake不会侦测到不会重新编译,需要手动去编译等),于是开始尝试使用CMake来编写Qt程序, ...

  9. CSS3中更灵活的布局方式

    flex是一个灵活性强的布局方式,它能够很好的控制内部元素的宽度,高度或者剩余的空间部分,来适应不同的显示设备和不同的屏幕尺寸,而真正达到一种自适应效果. flex布局与常规布局截然不同,常规布局虽然 ...

  10. 字符串截取slice() substring() substr()的区别?

    获取子字符串 slice()        substr()    substring() 不会修改字符串本身,他们只是返回一个基本类型的字符串值 var str='abcdefghijklmn'; ...