USACO06JAN The Cow Prom /// tarjan求强联通分量 oj24219
题目大意:
n个点 m条边的图 求大小大于1的强联通分量的个数
https://www.cnblogs.com/stxy-ferryman/p/7779347.html
tarjan求完强联通分量并染色后
计算一下每种颜色的个数 就是每个强联通块的大小
#include <stdio.h>
#include <cstring>
#include <algorithm>
#include <stack>
using namespace std; const int N=;
struct EDGE { int to, nt; }e[*N];
int head[N], tot;
int dfn[N], low[N], ind;
int col[N], id;
bool vis[N];
stack <int> s; int n, m, cnt[N]; void init() {
while(!s.empty()) s.pop();
for(int i=;i<=n;i++) {
head[i]=dfn[i]=low[i]=col[i]=-;
vis[i]=cnt[i]=;
}
tot=ind=id=;
}
void addE(int u,int v) {
e[tot].to=v;
e[tot].nt=head[u];
head[u]=tot++;
} void tarjan(int u) {
dfn[u]=low[u]=ind++;
s.push(u); vis[u]=;
for(int i=head[u];i!=-;i=e[i].nt) {
int v=e[i].to;
if(dfn[v]==-) {
tarjan(v);
low[u]=min(low[u],low[v]);
} else {
if(vis[v]) low[u]=min(low[u],low[v]);
}
}
if(dfn[u]==low[u]) {
col[u]=++id;
vis[u]=;
while(s.top()!=u) {
col[s.top()]=id;
vis[s.top()]=;
s.pop();
} s.pop();
}
} int main()
{
while(~scanf("%d%d",&n,&m)) {
init();
for(int i=;i<=m;i++) {
int u,v;
scanf("%d%d",&u,&v);
addE(u,v);
}
for(int i=;i<=n;i++)
if(dfn[i]==-) tarjan(i);
for(int i=;i<=n;i++)
cnt[col[i]]++;
int ans=;
for(int i=;i<=id;i++)
if(cnt[i]>) ans++;
printf("%d\n",ans);
} return ;
}
USACO06JAN The Cow Prom /// tarjan求强联通分量 oj24219的更多相关文章
- tarjan求强联通分量
tarjan求强联通分量 变量含义说明: pre[i]:i点的被访问的时钟编号,被分配后保持不变 low[i]:i点能访问的最先的点的时钟编号,随子节点改变 scc_no[i]:i点所在的强联通分量的 ...
- Tarjan求强联通分量+缩点
提到Tarjan算法就不得不提一提Tarjan这位老人家 Robert Tarjan,计算机科学家,以LCA.强连通分量等算法闻名.他拥有丰富的商业工作经验,1985年开始任教于普林斯顿大学.Tarj ...
- tarjan求强联通分量 模板
void tarjan(int u) { dfn[u]=low[u]=++dfs_clock; stack_push(u); for (int c=head[u];c;c=nxt[c]) { int ...
- Tarjan的强联通分量
求强联通分量有很多种. <C++信息学奥赛一本通> 中讲过一个dfs求强联通分量的算法Kosdaraju,为了骗字数我就待会简单的说说.然而我们这篇文章的主体是Tarjan,所以我肯定说 ...
- tarjan模板 强联通分量+割点+割边
// https://www.cnblogs.com/stxy-ferryman/p/7779347.html ; struct EDGE { int to, nt; }e[N*N]; int hea ...
- Tarjan算法---强联通分量
1.基础知识 在有向图G,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子 ...
- tarjan求双联通分量(割点,割边)
之前一直对tarjan算法的这几种不同应用比较混淆...我太弱啦! 被BLO暴虐滚过来 用tarjan求点双,很多神犇都给出了比较详细的解释和证明,在这里就不讲了(其实是这只蒟蒻根本不会orz) 这里 ...
- 强大的dfs(用处1——拓扑排序【xdoj1025】,用处二——求强联通分量【ccf高速公路】)当然dfs用处多着咧
xdoj 1025 亮亮最近在玩一款叫做“梦想庄园”的经营游戏.在游戏中,你可以耕种,养羊甚至建造纺织厂. 如果你需要制造衣服,你首先得有布匹和毛线.布匹由棉花纺织而成:毛线由羊毛制成,而羊需要饲料才 ...
- POJ 3180-The Cow Prom (图论-有向图强联通tarjan算法)
题目大意:有n个牛在一块, m条单项绳子, 有m个链接关系, 问有多少个团体内部任意两头牛可以相互可达 解题思路:有向图强连通分量模版图 代码如下: #include<stdio.h> # ...
随机推荐
- error LNK2019: 无法解析的外部符号 _PhInitializePhLib,该符号在函数 _EnumHandle 中被引用
编译时提示上面的错误,而确实应用了该函数的库文件,直接搜索lib文件内容,发送该函数的声明如下_PhInitializePhLib@0 说明函数的编译方式和库文件的编译方式不同,发现该工程的调用约定为 ...
- ebay上传图片的要求
eBay's Picture Requirements Introduction to Pictures in Listings Pictures make an item more appealin ...
- HDU 6656 Kejin Player (期望DP 逆元)
2019 杭电多校 7 1011 题目链接:HDU 6656 比赛链接:2019 Multi-University Training Contest 7 Problem Description Cub ...
- B. Light bulbs(2019 ICPC上海站)
There are NN light bulbs indexed from 00 to N-1N−1. Initially, all of them are off. A FLIP operation ...
- Python移动自动化测试面试✍✍✍
Python移动自动化测试面试 整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的时候可以 ...
- Python匿名函数(lambda函数)
匿名函数 -- 一行函数 lambda -- 关键字 x是普通函数的形参(位置,关键字...)可以不接收参数(x可以不写) :x是普通函数的函数值(只能返回一个数据类型)(:x返回值必须写) 1)此函 ...
- <Linux>Linux基础学习(兄弟连版本)
1.Linux系统简介 1.1 Unix与Linux发展史 父子关系:Unix 是Linux的前身 1969年,肯丶汤姆森开发Unix系统(为了加快玩游戏的速度 - -,自己开发的系统) 1971年, ...
- Django(九) xadmin全局配置
xadmin的使用,首先需要对model进行注册,才能在后台管理中进行操作. 1.在app里创建py文件:adminx(必须这个名称) 2.导入xadmin和models里的类,格式如下: 其中lis ...
- Spring案例1出纯注解开机
配置QueryRunner对象:注解说明 package cn.mepu.config; import org.apache.commons.dbutils.QueryRunner; import o ...
- BBS论坛 登录功能
四.登录功能 前端页面html代码: <!DOCTYPE html> <html lang="en"> <head> <meta char ...